International Meeting of the Psychometric Society – 2003, Chia, Cagliari, Italy July 7-10, 2003

Visualization and Classification via Contiguity Analysis

Ludovic Lebart

CNRS-ENST, 46 rue Barrault, 75013, Paris, France lebart@enst.fr

categorical variables, in a high dimensional space, with a high level of noise,

powerful tools of visualization are needed.

There is usually a **trade-off** between:

- the **comfort** of the representation,
- the transparency of the method
- the possibilities of assessment.

Our aim:

to fill the gap between:

 some black box methods leading to clear and legible results (such as *Kohonen Self Organizing Maps*),

 and the more statistically transparent and less constrained techniques of clustering (used together with principal axes techniques) whose outputs are often difficult to handle.

We stress here the contribution of <u>contiguity analysis</u> to such approaches.

The structure of symmetric graph can aptly describe some a priori structures of observations: chronological observations, geographic information,...

But such a structure can be generated by the multidimensional data themselves, or by parts of the data set (any binary relationship R) :

Graphs of k nearest neighbours (after « symmetrisation » !) R(i,j) means that i is one of the k nearest neighbours of j (k varies from 1 to n, number of observations).

Graphs derived from distance thresholds t (generally derived from quantiles of distances). R(i,j) means that $d(i,j) \le t$.

We will show that such graphs constitute a (the?) **missing link** between **clustering and classification** on the one hand, and **principal axes techniques** on the other.

We consider a set of multivariate observations, *n* objects described by *p* variables, leading to a matrix **Y**, whose rows have an *a priori* graph structure.

The *n* objects are the vertices of a symmetric graph G whose associated (n, n) matrix is M.

 $(\mathbf{m}_{ii'} = 1 \text{ if vertices i and i' are})$ joined by an edge, $\mathbf{m}_{ii'} = 0$ otherwise).

1) In a first step, the graph structure could be considered as **external** (geographic areas, time series).

2) Then we consider the situation in which the graph structure is **not external**, but derived from the matrix **Y** itself,

(e.g.: The series of graphs of **k-nearest neighbours**).

The idea of deriving from data a metric likely to highlight the existence of clusters dates back to:

ART, D., GNANADESIKAN, R., KETTENRING, J.R. (1982): Data Based Metrics for Cluster Analysis, Utilitas Mathematica, 21 A, 75--99.

3) Eventually, we will mention the case of a graph derived from a part (some columns) of the data matrix Y, or from supplementary columns (instrumental variables). The *n* objects (rows of Y) are the vertices of a symmetric graph G whose associated (n, n) matrix is **M**.

 $m_{ii'} = 1$ if vertices i and i' are joined by an edge, $m_{ii'} = 0$ otherwise. $m = \sum m_{ii'}$ (number of edges of G)

Local variance $v^{c}(y) = (1/2m) \sum m_{ii'} (y_{i} - y_{i'})^{2}$ Global variance $v(y) = (1/2n(n-1)) \sum (y_{i} - y_{i'})^{2}$

(The classical empirical variance is a particular case of local variance when the graph is complete, i.e.: $m_{ii'} = 1$ for all i and i ')

Contiguity coefficient (Geary, 1954; after Moran and Von Neumann)

 $c(y) = v^*(y) / v(y)$

« Corrected » definitions of local variance, new contiguity coefficient

New Local variance

$$m_i^* = (1/n_i) \sum_k m_{ik} y_k$$
$$v^*(y) = (1/n) \sum_k (y_i - m_i^*)^2$$

New Contiguity coefficient

 $c(y) = v^*(y) / v(y)$

With, as usual,

$$v(y) = 1/n \sum_{i=1}^{n} (y_i - m)^2$$

Defining the diagonal matrix N (matrix of degrees) such that

 $n_i = \Sigma_k m_{ik}$

c(y) reads, in matrix form (**U** = matrix associated to a complete graph):

 $c(y) = y' (I - N^{-1}M)' (I - N^{-1}M) y / y' (I - (1/n)U) y$

The (p, p) local covariance matrix **V**^{*} is then defined

$$V^* = (1/n) Y'(I - N^{-1}M)' (I - N^{-1}M) Y$$

This matrix, together with the corresponding correlation matrix provide a powerful tool for studying partial correlation when the graph is derived from a set of « instrumental variables ».

Example of a graph G(n = 25) associated with a squared lattice

... and its associated matrix $\mathbf{M} \rightarrow$

matrix:																										
М		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	r01	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r02	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r03	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r04	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r05	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r06	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r07	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	r08	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	r09	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	r10	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	r11	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
	r12	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0
	r13	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0
	r14	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0
	r15	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0
	r16	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0
	r17	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0
	r18	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0
	r19	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	0
	r20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1
	r21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0
	r22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0
	r23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0
	r24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1
	r25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1

Condensed numerical coding of matrix **M**

Vertex		Adjace	ent ver	tices		
1	1	2	6			
2	2	1	7	3		
3	3	2	8	4		
4	4	3	9	5		
5	5	4	10			
6	6	1	7	11		
7	7	2	6	8	12	
8	8	3	7	9	13	
9	9	4	8	10	14	
10	10	5	9	15		
11	11	б	12	16		
12	12	7	11	13	17	
13	13	8	12	14	18	
14	14	9	13	15	19	
15	15	10	14	20		
16	16	11	17	21		
17	17	12	16	18	22	
18	18	13	17	19	23	
19	19	14	18	20	24	
20	20	15	19	25		
21	21	16	22			
22	22	21	17	23		
23	23	18	22	24		
24	24	19	23	25		
25	25	24	20			

Description of chessboard **G** through Principal Component Analysis of **M**

13

Description of chessboard **G** through *Correspondence Analysis* of **M**

Note that the calculations involved in the CA of such typical graphs could be carried out directly, without the help of a computer.

In the case of a simpler graph (a chain) the description through CA leads to the relationship: $Ma = \lambda a$, which leads to a simple finite difference equation.

$$a_{i-1} + a_{i+1} = \lambda a_i$$

$$\Rightarrow \quad \varphi_{\alpha}(j) = \cos\left(\frac{2j\alpha\pi}{n}\right) \qquad \qquad \phi_{\alpha}(j) = \sin\left(\frac{2j\alpha\pi}{n}\right)$$

A chessboard can then be defined as a "tensorial sum of chains", and the final results analytically derived from those of the chain (see : Benzécri, 1973). Note the analogy with the eigen-vectors of a Laplace operator.

Properties of the « Laplacian » (matrix: N - M) of a graph: Some references...

CHUNG F.R.K., *Spectral Graph Theory*. CBMS Reg. Conf. Ser. Math. 92, American Mathematical Society, 1997.

KOREN Y., CARMEL L., HAREL D., ACE: a Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs, *Proceedings of IEEE Information Visualization*, 2002, p 137-144.

MOHAR B., The Laplacian Spectrum of Graphs, *Graph Theory*, *Combinatorics and Application*, 2, 1991, p 871-898.

MOHAR B., Some Applications of Laplace Eigenvalues of Graphs, *Graph Symmetry, Algebraic Methods and Application*, Hahn G., Sabidussi G., NATO Ser. C., 497, Kluwer, 1997, p 225-275.

Explaining the good quality of the visualization:

Local variance = $y'(I - N^{-1}M)'(I - N^{-1}M) y$ Global variance = y'y

Bounds for c(y) = contiguity coefficient.

 $c(y) = y'(I - N^{-1}M)'(I - N^{-1}M) y / y' y$

the minimum of c(y), μ , is the square root of the smallest eigenvalue μ^2 of:

 $(I - N^{-1}M)'(I - N^{-1}M) \psi = \mu^2 \psi$

If the graph is regular, $\mathbf{N}^{-1} = (1/r) \mathbf{I}$ $(\mathbf{I} - (1/r)\mathbf{M})^2 \ \psi = \mu^2 \psi$ $(\mathbf{I} - \mathbf{N}^{-1}\mathbf{M}) \ \psi = \mu \psi$ Equivalently: $\mathbf{N}^{-1}\mathbf{M} \ \psi = (1 - \mu) \psi$ We have obtained, up to now: $N^{-1}M \psi = (1 - \mu)\psi$

Note the transition formula, (no: formulae, owing to symmetry!)

 $\mathbf{N}^{-1}\mathbf{M}\phi = \varepsilon \sqrt{\lambda}\phi$

(formula drawn from the Correspondence Analysis of matrix ${f M}$)

if ε = +1, direct factor,
if ε = -1, inverse factor.
(See, e.g., the analysis of confusion matrices).

Then: Min [c(y)] = Min μ = Max λ , [= λ_{max} if (ε = +1).]

Thus: Min [c(y)] = 1- $\sqrt{\lambda_{max}}$

Paradoxical measurement of *information* : case of a *cycle*

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\varphi_{\alpha}(j) = \cos\left(\frac{2j\alpha\pi}{n}\right) \qquad \phi_{\alpha}(j) = \sin\left(\frac{2j\alpha\pi}{n}\right)$$

$$\lambda_{\alpha} = \cos^2\left(\frac{2\alpha\pi}{n}\right) \qquad \tau_{\alpha} = \frac{2}{n}\cos^2\left(\frac{2\alpha\pi}{n}\right)$$

The contiguity ratio can be generalized :

- a) to different distances between vertices in the graph,
- b) to multivariate observations

(For Geary coefficient, both generalizations are dealt with in: Lebart, 1969).

a) The graph corresponding to the distance defined as "the shortest path of length k between two vertices" is associated to the matrix $\mathbf{M}^{(k)} - \mathbf{M}^{(k-1)}$, where $\mathbf{M}^{(k)}$ designates the k-th booleean power of the matrix $(\mathbf{I} + \mathbf{M})$.

Therefore, it is easy to test the significance of spatial auto-correlation, so long as these distances on the graph remain meaningful.

This approach provides a variant, in the graph case, of the *variogram* used in *geostatistics*, as presented in the seminal papers of Matheron (1963, 1965).

b) Generalization to multivariate observations

Let **Y'u** be the vector of the n values of a linear combination u of the p variables.

Then, its contiguity coefficient is defined likewise:

 $c(u) = \mathbf{u' V} * \mathbf{u} / \mathbf{u' V u}$

... in which $\mathbf{V}^* = (1/n) \mathbf{Y}' (\mathbf{I} - \mathbf{N}^{-1}\mathbf{M})' (\mathbf{I} - \mathbf{N}^{-1}\mathbf{M}) \mathbf{Y}$ is the (p, p) local covariance matrix \mathbf{V}^* Contiguity analysis is the search for the minima of c(u):

$$c(u) = \mathbf{u'} \mathbf{V}^* \mathbf{u} / \mathbf{u'} \mathbf{V} \mathbf{u}$$

It reduced to Fisher Linear Discriminant Analysis if G is associated with a partition graph.

C(u) allows one to deal with overlapping clusters, fuzzy partition, ...

External graphs: Partial correlation

The local covariance matrix and its related correlation matrix can define a local context for any set of instrumental variables.

 $V^* = (1/n) Y'(I - N^{-1}M)' (I - N^{-1}M) Y$

M could be defined such that: m(i,j) = 1 iff $d2(z_i, z_j) < t_0$

(without "border effects").

- See Kendall (1941), Mantel, (1967), Quade (1974), Hubert (1985).

Comparison with $V^* = (1/n) Y'(I - Z(Z'Z)^{-1}Z') (I - Z(Z'Z)^{-1}Z') Y$

- « Quasi-Polynomial regression » instead of linear regression.

Internal graphs

The idea is to describe the local structure with a graph:

The k-nearest neighbours graph $(1 \le k \ll n)$

→ A distance threshold graph

The local covariance matrix defined via such graphs, through the formula

 $V^* = (1/n) Y'(I - N^{-1}M)' (I - N^{-1}M) Y$

could delinearize the search for the principal axe...

The distance threshold d must be less than d_0 to allows the contiguity analysis to unfold the scattering diagram

Example 1: Anderson -Fisher Iris data set:

The 3 a priori categories could be ignored...

The behavior of the series of nearest neighbours graphs is stressed

1	5.10	3.50	1.40	.20	1
2	4.90	3.00	1.40	.20	1
3	4.70	3.20	1.30	.20	1
4	4.60	3.10	1.50	.20	1
		•			
51	7.00	3.20	4.70	1.40	2
52	6.40	3.20	4.50	1.50	2
53	6.90	3.10	4.90	1.50	2
		•			
101	6.30	3.30	6.00	2.50	3
102	5.80	2.70	5.10	1.90	3
103	7.10	3.00	5.90	2.10	3

Processing Iris data

```
PCA
Visualization (V)
```

External specific contiguity graph: Fisher discrimination (V)

Some nearest neighbours graphs (V) Contiguity analysis (V)

Some threshold graphs Contiguity analysis (V).

Numerical synthesis...

Conclusion

- Transparency of the process (analytical solutions)
- Extension of linear disriminant analysis to more complex patterns
- Possibility of robust PCA and non linear partial correlation.
- Possibility of assessment.

ALUJA T. and LEBART L. (1984): Local and Partial Principal Component Analysis and Correspondence Analysis, *COMPSTAT Proceedings*. Physica Verlag, Vienna, 113-118.

ANSELIN L. (1995): Local indicators of spatial association. Geog. Anal., 27, 2, 93-115.

ART D., GNANADESIKAN R., KETTENRING J.R. (1982): Data Based Metrics for Cluster Analysis, *Utilitas Mathematica*, 21 A, 75-99.

BENZECRI, J.P. (1973): Analyse des Données: Correspondances. Dunod, Paris.

BURTSCHY B., LEBART L. (1991): Contiguity analysis and projection pursuit. In: *Appl. Stoch. Mod. and Data Anal.* R. Gutierrez et al., Eds, World Scientific, Singapore, 117-128.

CAZES P. (1986) Correspondance entre deux ensembles et partition de ces deux ensembles, *Les Cahiers de l'Analyse des Données*, vol.XI, no.3, 335-340.

CHUNG F.R.K., *Spectral Graph Theory*. CBMS Reg. Conf. Ser. Math. 92, American Mathematical Society, 1997.

CLIFF A.D. et ORD J.K. (1981): Spatial Processes: Models and Applications. Pion, London.

COTTRELL M., ROUSSET P. (1997): The Kohonen Algorithm: a powerful tool for analysing and representing multidimensional qualitative and quantitative data. In: *Biological and Artificial Computation : From Neuroscience to Technology*. J. Mira, R. Moreno-Diaz, J. Cabestany, (eds), Springer, 861-871.

ESCOFIER B. (1989): Multiple correspondence analysis and neighboring relation. In: *Data Analysis, Learning Symbolic and Numeric Knowledge*. Diday E. (ed.), Nova Science Publishers, New York, 55-62.

FARAJ A. (1993): Analyse de contiguité: une analyse discriminante généralisée à plusieurs variables qualitatives. *Revue Statist. Appl.*, 41, (3), 73-84.

GEARY R.C. (1954): The Contiguity Ratio and Statistical Mapping, *The Incorporated Statistician*, 5, 115-145.

GNANADESIKAN R., KETTENRING J.R. et LANDWEHR J.M. (1982): Projection Plots for Displaying Clusters, In: *Statistics et Probability*. G. Kallianpur *et al.*, eds, North-Holland.

GOWER J. C. (1984): Procrustes analysis. In: *Handbook of Applicable Mathematics*. 6, Lloyd E.H. (ed.), J. Wiley, Chichester, 397-405.

HUBERT L. (1985): Combinatorial data analysis: association and partial association. Psychometrika, 50, 4, 449-467.

KLEIWEG P. (1996): *Een inleidende cursus met practica voor de studie Alfa-Informatica*. Master's thesis, Rijksuniversiteit Groningen, 1996.

KOHONEN T.(1989): *Self-Organization and Associative Memory*. Springer-Verlag, Berlin, 3rd edition, 1989.

KOREN Y., CARMEL L., HAREL D., ACE: a Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs, *Proceedings of IEEE Information Visualization*, 2002, p 137-144.

LAFOSSE R. (1985): Analyse Procustéenne de deux tableaux. Thèse, Université de Toulouse.

LE FOLL Y. (1982): Pondération des distances en analyse factorielle. *Statist. et Anal. des Données.* 7, 13-31.

LEBART L. (1969): Analyse Statistique de la Contiguité, Publ. de l'ISUP. XVIII, 81-112.

LEBART, L. (2000): Contiguity Analysis and Classification, In: W. Gaul, O. Opitz and M. Schader (Eds): *Data Analysis*. Springer, Berlin, 233--244.

LEBART, L. (2001): Representing words and texts through contiguity analysis. In: *ASMDA 2001*, 10th International Symposium on Applied Stochastic Models and Data Analysis. G. Govaert, J. Janssen, N. Limnios (eds), UTC, Compiègne, 654-659. LEBART, L., SALEM, A. and BERRY, L. (1998): *Exploring Textual Data*. Kluwer, Dordrecht. LEBART L., MIRKIN B. (1993): Correspondence Analysis and Classification. In: *Multivariate Analysis: Future Directions 2*. Cuadras C.M. and Rao C.R., (eds), North-Holland, 341-357.

LEBART L., MORINEAU A. PIRON M., L. (1998): *Statistique Exploratoire Multidimensionnelle*, Dunod, Paris.

LEBART L., PIRON M., STEINER J.F. (2003): La Sémiométrie. Dunod, Paris.

MATHERON G. (1963): Principles of geostatistics. *Economic Geology*. 58, 1246-1266.

MEOT A., CHESSEL D. et SABATIER R. (1993): Opérateur de voisinage et analyse des données spatio-temporelles. In *Biométrie et environnement*, Lebreton J.-D., Asselain B., (eds), Masson, Paris, 45-71.

MOM A. (1988): *Methodologie Statistique de la Classification des reseaux de transport*. Thèse, Université des Sciences et Techniques du Languedoc, Montpellier.

RIPLEY B. D. (1981): Spatial Statistics. J. Wiley, New York.

SCHONEMANN P. H. (1968): On two-sided orthogonal procrustes problems. *Psychometrika*. 33, 19-33.

STEINER J.-F. and AULIARD, O. (1992): La sémiometrie: un outil de validation des réponses. In *Qualité de l'Information dans les Enquêtes*, ASU (ed) Dunod, Paris, 241-274.

TUCKER, L. R. (1958): An inter-battery method of factor analysis. *Psychometrika*. 23, (2).

VON NEUMANN, J.(1941): Distribution of the ratio of the mean square successive differences to the variance. *Ann. of Math. Statistics.* 12, 367-395.

Danke

Thank You

Obrigado

Grazie

Gracias

Domo Arigato

Choukrane

Merci