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Abstract

This paper comparesdialogue operators and machine learning operators from the
point of view of understanding the mechanisms by which learning takes place as
a result of collaboration between agents. Machine Learning operators are
operators that make knowledge changes in the knowledge space. Dialogue
operators are operators used in collaborative learning dialogues as transformation
functionsthat allow knowledge to be co-constructed in dialogue. We describe the
degree of overlap between both sets of operators, by applying learning operators
to an example of dialogue. We review several differences between these two set
of operators: the number of agents, the coverage of strategica aspects and the
distance between what one says or hears and what one knows. We discuss the
interest of fusing dialogue and learning operators in the case of person-machine
cooperative learning and multi-agent learning systems.

1. Introduction.

Is there something below a machine learning algorithm? Thousands of machine
learning systems have been developed, clustered in categories such as "explanation
based learning”, "similarity based learning", "reinforcement learning”, ... Can we
describethisvariety of algorithms with arestricted set of elementary learning operators
? Can we integrate them into multi-strategy learning systems? Michalski (1993)
addresses this question. He proposes a set of operators in knowledge space, termed
knowledge transmutations. Transmutations are generic patterns of knowledge change.
A transmutation may change knowledge, derive new knowledge or perform
manipulations on knowledge that do not changeits content.

Thissearchfor "atoms' is common to many scientific fields. We do observe a similar
effort in dialogue studies concerning collaborative learning. Scholars attempt to
understand the mechanisms by which dialogue leads to learning. Again, these
mechanisms have been clustered into categories such as negotiation, argumentation,
explanation, mutual regulation, ... Beyond these labels, can we describe a dialogue
with more atomic operators? There exist many classifications of dialogue units,
reflecting different theoretical approaches. We use here the classification proposed by
Baker (1994). It includes a set of operators, termed transformation functions.
Transformation functions describe - at the knowledge level - the relation between the
contentsof two utterances.




A core issue in collaborative learning research is to understand how dialogue and
learning are related. Hence, naturally, we look for convergence between the "atoms'
isolated in machine learning and in dialogue studies. Therefore, this chapter aims to
compare the two above mentioned set of operators, transmutations and
transformations. Michalski's and Baker's operator sets are not unanimously recognised
in their respective scientific community as the common reference. They are treated here
as examples, selected becausethey arefamiliar to the authors.

Our goa is mainly scientific: to understand the relationship between dialogue and
learning, and express this understanding through a computational model. This work
has also practical implications: to integrate dialogue operators into machine learning
algorithms to adapt these algorithms, on one hand, to the interactions with a user, and
on the other hand, to interactions with other artificial agents (learning in multi-agent
systems).

Our comparison method is simple. In section 2 , we analyse collaborative dialogues
with the learning operators proposed by Michalski. Section 3 applies Baker's operators
for analysing collaborative problem-solving. In section 4, we draw conclusions with
respect to the relationship between these sets of operators at the theoretical level. Then,
we draw more practical conclusions on the interoperability of dialogue and learning
operatorswith respect to the following goals: modelling collaborative learning (section
5), and implementing human-machine collaborative learning systems (section 6).

2. A taxonomy of learning operators

Michalski (1993) defines learning as follows. Given an input knowledge (1), a god
(G), background knowledge (BK) and a set of transmutations (T), determine output
knowledge (O) that satisfies the goal, by applying transmutations from the set T to
input | and/or background knowledge BK. Transmutations perform change of the
knowledge space, i.e. the space where can be represented all possible inputs, al of the
learner’ s background knowledge and all knowledge that the learner can generate. A
transmutation may change existing knowledge, derive new knowledge or perform
certain manipulations on knowledge that do not changeits content.

To define these operators, Michalski introduces two concepts. a reference set and a
descriptor. A reference set of statements is an entity or a set of entities that these
statements describe or refer to. A descriptor is an attribute, a relation, or a
transformation whose instantiation (value) is used to characterise the reference set or
theindividua entitiesin it. For example, consider a statement: “Paul is small, has a
PhD in Computer Science from Montpellier university, and likesskiing”. The reference
set here is the singleton “Paul”. The sentence uses three descriptors. a one-place
attribute “height(person)”, a binary relation “likes(person, activity)” and a four-place
relation “ degree-received(person, degree, topic, university)”. The reference set and the
descriptors are often fixed once in amachine learning system.



Generalization extends the reference setsof input, i.e it
generates a description that characterizes a larger
reference set than the input. It is based on inductive,
deductive or analogical inference.

Specialization narrows the reference set of objects.
It is based on deductive, inductive or analogical
inference.

Abstraction reduces the amount of detail in a description
of the given reference set. It isbased on deduction.

Concretion generates additional details about the
reference set.

Smilization derives new knowledge about a reference
set on the basis of the similarity between this set and
another reference set about which the learner has more
knowledge. It isbased on analogical inference.

Dissimilization derives new knowledge on the basis
of the lack of similarity between the compared
reference sets. It is also based on anaogica
inference.

Association determines a dependency between given
entities or descriptions based on the observed facts
and/or background knowledge. Dependency may be
logical, causal, statistical, temporal, etc...

Disassociation asserts a lack of dependency. For
example, determining that a given instance isnot an
example of some concept, is a disassociation
transmutation

Sdlection isa transmutation that selects a subset from a
set of entities (a set of knowledge components) that
satisfies some criteria. For example, choosing a subset
of relevant attributes from a set of candidates, or
determining the most plausible hypothesis among a set
of candidate hypotheses.

Generation generates entities of a given type. For
example, generating an attribute to characterize a
given entity, or creating an alternative hypothesis to
the one already generated.

Agglomeration groups entities into larger units
according to some goa criterion. If it also hypotheses
that the larger units represent general patterns in data,
thenitiscalled clustering.

Decomposition splits a group (or a structure) of
entities into subgroups according to some goa
criterion.

Characterization determines a characteristic description
of a given set of entities, which differentiates these
entities from any other entities. For example, a simple
form of such description isalist(or a conjunction) of all
properties shared by the entities of the given set.

Discrimination determines a description that
discriminates the given set of entities from another
set of entities.

Table 1: Pairs of opposite knowledge generation transmutations (proposed by
Michalski, 1993)

Transmutations are bi-directional operations: they are grouped into pairs of opposite
operators, except for derivation that span a range of transmutations. Two categories of
transmutations are defined:

» Knowledge generation transmutations change informational content of the input
knowledge. They are performed on statements that have a truth status. These
transmutations are generally based on deductive, inductive, and/or analogical
inference.

* Knowledge manipulation transmutations are operators that view input knowledge
as data or objects to be manipulated. There is no change of the informational
content of the knowledge. Examples are insertion, deletion, sorting or unsorting
operators.

In the following, we restrict ourselves to the first category (table 1): changes at the
knowledge level, which can later be compared to Baker's knowledge level operators. It
is more difficult to relate operators which concern the form since the form of an
utterance is very different from the Al knowledge representation scheme.

Derivations are knowledge generation transmutations that derive one piece of
knowledge from another piece of knowledge (based on some dependency between
them), but do not fall into the special categories described above. Because the
dependency between knowledge components can range from logical equivalence to
random relationship, derivations can be classified on the basis of the strength of
dependency into awide range of forms.



* Reformulation transforms a segment of knowledge into a logicaly equivalent
segment of knowledge.

» Deductive derivation, Abductive Explanation and Prediction can be viewed as
intermediate derivations. A weak intermediate derivation is the cross-over operator
in genetic algorithm (Goldberg, 1989). Mathematical or logical transformations of
knowledge al so representsforms of derivations.

» Randomization transforms one knowledge segment to another one by making
random changes. For example, the mutation operation in a genetic algorithm
(Goldberg, 1989).
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1] AL Sowhat can we say if there’s an inelastic impact ?

2] A2: Well, that the energy .... al the energy ....

3] AL Well, that the kinetic energy istheoretically nil !

4] A2: It'snil onarrival, infact ...

5] AL Since ... since the object stops, in fact, oh yes, especially since there it doesn’t move, uh...

6] A2: it'snil at the start and nil on arrival ... about energy ... yes, but at the moment of an inelastic|
impact, what isitthat ...

7] AL we've been doing that for a while now ! <sighs>

8] A2: but we've aso ...

9] AL wait, ... inelastic impact, right, you've conservation of momentum, but ... the kinetic energy|
isn't conserved ! | think that's what we've seen ... with elastic impact, by contrast, both arg
conserved

[10] A2: Yes, elastic impact, there's the total energy which isconserved ...

[11] AL Yes

()
Figure 1. Example of mutua refinement strategy 1n physics collaborative problem-
solving dialogue.

3. A taxonomy of dialogue operators

A Kkey issue in the study of collaborative problem-solving is to understand how jointly
agreed solutions are generated in dialogue. The solutions that are jointly produced can
rarely be reduced to simple ‘accumulations' of individual proposed solution elements.
Rather, solutions emerge by an interactive process in which each agent (student)
transforms the contributions of the other, in order to arrive at a mutually satisfactory
solution element. This process may be described as one by which knowledge is co-
constructed by aprocess of negotiation (where the term 'knowledge' is relativised to
the agents concerned, in the absence of a higher authority or arbitrator).

A model for collaborative problem-solving in dialogue based on the notion of
negotiation has been described by Baker (1994). We have chosen to discuss this model
becauseit is of course more familiar to us, but also becauseit was developed on the
basis of detailed analysis of collaborative problem-solving dialogues (it has been
validated with respect to dialogue corpora for several different tasks in physics
problem-solving). Most other taxonomies of dialogue operators have been based on
extensionsscl)f Mann and Thompson's (1988) model for "rhetorical relations’ in texts to
interactions'.

Although we can not discuss this model in detail here, the basic idea is that
collaborative problem-solving proceeds by a negotiation process, defined as a type of
interaction where the agents have the mutual goal of achieving agreement with respect
to an as yet unspecified set of negotia, under certain constraints (relating to the

! But see also the earlier work of Hobbs (1982) on "coherence relations" in discourse, and Sanders, Spooren & Noordman
(1992) for a synthesisof different approaches on textual and dialogual relations.



problem, the social situation, the knowledge states of each agent, ...). Such afina state
may be achieved by three possible strategies : mutual refinement (each agent makes
proposals, each of which are transformed by the other), stand pat (one agent only
makes proposals, with different forms of feedback, encouragement, discouragement,
..., from the other) and argumentation (conflict in proposals is made explicit and
mutually recognised, each tries to persuade the other to accept their proposals).
Although knowledge may in fact by more or less indirectly co-constructed during each
strategy (e.g. during ‘constructive argumentation'), here we shall concentrate on the
most frequent and typical strategy that is used : mutual refinement..

Each strategy is defined in terms of a set of communicative acts and sets of relations
(created by dialogue operators) that are established between the propositions that they
express. The basic communicative acts for the mutual refinement strategy are OFFER
and ACCEPTANCE or REJECTION. These are defined using Bunt's (1989) model
for dialogue. OFFER's have the following most important pertinence condition (when
uttered by agent Al) : "accept(A2,p) -> accept(Al,p)". In other words, they are
conditional : A1 will accept the proposition p (a problem solution, an action ...) iff A2
will do so ("I will if you will"). Acceptances and rejections have the function of
allowing the agent that made the original offer to accept its own offer or not (on the
basis that the other does so).

However, OFFERs and ACCEPTANCE/REJECTIONS rarely occur in isolation, but
rather in sequences, and the sequential position of communicative acts produce
additional secondary effects on the contexts of agents. For example, if A1 offers "We
are in France", then A2 offers "we are in Lyon", then the second offer indirectly
communicates acceptance of the first, in virtue of the informational (logico-semantic)
relations betweenthe contents of the two offers ("Lyon is in France” & "in Lyon" ->
"in France"). Similarly, "We arein Lyon", followed by "We are in France" could, in
certain contexts, communicate rejection (i.e. we arein France, but | don't agree that
we are in Lyon). This is why it is aso important to study the relations between
communicative acts in this strategy, that - at least on the knowledge level - may be
definedintermsof dialogue operators, or transformation functions.

Transformation functions (TFs) are described in terms of the logico-semantic relations
that are established between the propositions expressed in pairs of communicative acts,
either of the same speaker or between speakers. The two communicative acts do not
haveto directly follow each other in the dialogue. The claim that relations exist between
propositions expressed in communicative acts is of course a simplification - but one
that most often works - since a given proposed proposition relates in fact to the
previous context, from the agents own point of view. This point will be taken up in
discussion.

3.1 Expansion TFs

Thesetransform theinitially offered proposition by extending it in some way, either its
'scope’ along a generality/specificity dimension, or in informational terms (adding a
proposition, inferring a new one on the basis of the initial offer). The following are
typical example TFsinthisclass.



Expansion TFs

TF name Transformation Examples from the corpus
Generalisation p =TF=> generalisation of p "well, ... the energy ..." =TF=>
"...dl the energy ..."
Conjunction p=TF=>p0q “it'snil on arrival ..." =TF=>
"it'snil at the start, and it’snil on arrival .."
Disjunction p=TF=>p0Oq “the volume acts' =TF=>
"the volume or the mass'
Specific-value ARPX)=TF=>?2x=¢ “..kinetic energy " =TF=>
(A - predicate; ? x - variable) "istheoretically nil!”
Inference p=TF=>p - q "potential energy will increase’ =TF=>

"therefore the rebound force increases’

Table 2: Set of expansion transformation functions (Baker, 1994)

It should be noted that quite often, the transformation takesplacein a way which is left
partially implicit . For example, if one student offers pl, then the second may apply the
conjunction TF simply by offering p2 ; if it is not mutually believed that p2 is

contradictory with p1, then the second offer may beinterpreted as "OFFER(p2 [Ipl)".

3.2 Contraction TFs

These functions are usually the inverse of expansion functions : they restrict the
previously offered proposition, or render it more specific (less general). However, this
is not awaysthe case. For example, the inverse of inferring a new proposition g from
aprevious propositionp (p =TF=> p - Q) is to propose that g impliesp (p =TF=> q

- P), in other words, to give a reason for p. This case therefore comes into the
foundational class (see below).

Contraction TFs

TF name Transformation Example
Exclusive- pOq=TF=>p "the mass or the density” =TF=>
disjunction- "rather the density”
choice
Contra- p-q=TF=>p 0O "since it rebounds lower that showsit'sthe friction” =TF=>
inference -4 "it'slower, but it's not the friction that'sinvolved !"
Subtype p =TF=> sub-type "...dl the energy, ..." =TF=>"... the kinetic energy ..."
p
Class- p =TF=> domain " ... doyou redly think kilogramme ball made of rubber would
restriction of vaidity of p rebound alot ?' =TF=>
restricted

"yes, but only in the case of a perfectly elastic rebound"

Table 3: Set of contraction transformation functions (Baker, 1994)

This contraction strategy corresponds to knowledge deconstruction.  Although
theoretically, inverses of all expansion functions could exist, in reality examples are
hard to find. One possible explanation is in terms of cognitive economy : one the
students have co-constructed a possible solution by expansion, if they recognise "that's
not it, it can't be that !", it is easier to simply let the solution drop and start again
(perhaps taking part of the previous solution) rather than to deconstruct (contract) it
piece-by-piece.



3.3 Foundational TFs

These provide foundations (reasons for/against, explanations) for offered propositions.
Often, this occurs at the end of an expansion phase, when the students 'step back' and
attempt to verify or check the current joint proposal. For example, in Figure 1.

“it'snil on arrival, infact..." =TF-> "... sincethe object stops’

Usually, counter-reasons indicate a shift to the argumentation strategy, although more
isolated occurrences may occur within the mutual refinement strategy when weighing
the'pros and cons' of aproposal thatis in fact mutually agreed.

3.4 Neutral TFs

Theseleave the content of the initially offered proposition either completely unchanged
or elsetransformits meaning, expression in language or conceptualisation. They often
operate at the level of negotiating understanding and agreement. This is why exact
repetitions (nil transformation at knowledge level) usualy function to confirm
understanding and agreement. For example,

"... theobject stops, ...” =TF=> "... itdoesn't move, ...".

Often this occurs as a 'termination’ to an expansion phase, when the students try to
summaries the current joint solution. Some transformations on the language (or
terminology) are very important from alearning point of view. For example, in

"withtheweight” =TF=>"... themass'

the students pass from everyday language, and conceptualisations ("weight") to the
target (scientific) language/conceptions ("mass’).

4. Applying Michalski'soperatorsfor analyzing a dialogue

To evauate the interoperability of learning and dialogue operators, we attempted to
apply Michalski's operators to a short dialogue. It illustrates the way in which
knowledge is transformed (negotiated) in dialogue using the mutua refinement
strategy. Necessarily, it only illustrates some of the transformation functions that
occur. Thetask involves students conducting experiments (figure 1) where they try to
discover the propertiesof ballsof different substances that could explain their rebound
behaviour - in fact, the co-efficient of restitution (ALA2 = agents/students; [1], etc., =
line numbers).

Figure 2 shows a graphica analysis of the extract in Figure 1, using Michalski's
operators. Thedifferent propositions expressed by each agent (student) are analysed in
separate columns; relations between them, according to the Michalski operators, are
shown as labelson arrows.

General remarks. The extract begins by A1 determining the focus of the discussion :
"inelastic impact” ([1]). Thisis accepted by A2, and remains the common focus until
the second part of [9], when it shifts to the case of "eastic impact”. In this first
discussion on the case of inelastic impacts, the joint solution is successively
transformed basically by successions of generalization and specialization of what is to



be discussed within the "inelastic impact" focus - energy, kinetic energy - and by
adding more details to the reference set (class of inelastic impacts) by concretion -
kinetic energy is nil on arriva at the ground, energy but not momentum is conserved.
Once this solution element as been jointly transformed as far as the agents deem
necessary, Al then moves on to consider theinverse case - elastic impact.

line AgentAl Agent A2
(1
[2] ind asti cimpact, some energy
1
generalization
spedialization—_ dl theenegy
[3] ki retic energy <a———
concretion
kinetic energy theoretically ril
concretion
[4] nil on arriva
——
assodation .
. VT concretion
[5] because object stops, does na move
[6] nil & start and nil on arrive
[71.18 conaretion
[9] irelasticinpact, nomentum corseved /
concretion
irelasticinpact, ki nelti cenergy not conserved
discrimination
d asti cimpadt,
mamentum and ki netic energy conserved
genealizaion
[10] dadticinpad,
totd energy conserved
(19

Figure 2. Analysis of example physics collaborative problem-solving dialogue using
some Michal ski's machine-learning operators.

Transformations and collaboration. The expressed propositions and transformations are
distributed across both agents. An important aspect is ‘'who transforms what,
expressed by whom?. Thus, agents may transform propositions that they themselves
have expressed, either within their turn or across turns. More importantly - for the
study of collaborative learning - they transform propositions expressed by others. Such
agraphical analysis thus provides one way of mapping out the extent to which agents
are redly 'working together', i.e. collaborating (Baker, 1995). Roschelle and Teasley
(1995) have described some similar phenomena as "collaborative produced production
rules'. When agents are not collaborating (resolving in parallel), transformations are
usually performed by agentson their own contributions across turns.



What is the degree of goodness of fit ? In each transformation analysed, the most
appropriate operator has been chosen. Nevertheless, certain aspects are left out of the
analysis, even when restricting consideration purely to the knowledge level, and more
fine-grained distinctions can be made. Thus, within line [5], athough agent Al
appears, on the surface, to give a reason for why the kinetic energy is nil on arrival at
the ground, this does not really transform knowledge itself into new propositions
("because the object stops, it does not move"). Rather, the sequence "nil on arrival"-
"object stops'-"does not move" is a sequence of reformulations of the meaning of
"kinetic energy nil", in more everyday language. A second difficulty with applying the
operators can be seen from line [9], where A1l concludes discussion of "inelastic
impact” and beginsto consider the case of "elastic impact”. Is this transformation really
discrimination (apparently the best fit), i.e. " determines a description that discriminates
the given set of entities from another set of entities” ? It is analysed as discrimination
here since, by stating that energy is conserved with an elastic impact, this discriminates
this casefrom that of an inelastic impact where energy is not conserved. However, in
the case considered here, what is important is that the agent moves from considering a
class of entities "impacts that are inelastic" to considering the negation of it, i.e.
"Impacts that are not inelastic (= elastic)". This does not actualy transform the
knowledge base, but rather shifts attention so that al of the set of "impacts’ will be
described.

What is left out of the analysis ? In addition to there being finer knowledge-level
distinctions that can be made with the propositions that are analysed, some utterances
are of course left out entirely, since they do not express or transform new knowledge.
Itisinteresting at this point to briefly mention what they are, for this specific example,
and to describetheir functions:

Elementsleft out of analysis:
[1] A1l: Sowhat canwe say if there san inelastic impact ?

7] Al:  weve beendoing that for awhilenow ! <sighs>
[8] A2. butweveadso...

[10] A2: Yes<...>
[11] ALl: Yes

Line[1] is left out of the analysis since it does not express a new proposition, nor
transform knowledge. Rather, in proposes/introduces a new sub-problem to be
focussed on. Lines[7]-[8] express frustration with lack of progress, from the point of
view of Al, of joint problem-solving. In these terms it can be viewed as part of
metacognitive control of 'knowledge transformation’. Finally, lines[10] and [11] act as
a'punctuation’ to the knowledge transformation sequence. They do this given that the
agents must reach agreement, that a sequence of transformations is to be terminated,
and thatitis so dueto joint agreement. All of these aspects missed out of analysis relate
to a single fact about dialogue and collaborative problem solving : it needs to be
controlled or managed (Bunt, 1995).

In summary, analysisof collaborative problem solving dialogues with a specific set of
machine learning operatorscan in fact give us a picture of how collaboration has taken
place, on acertain level of generality. Aspectsthat are specific to (human) interactions
such as negotiation (reformulation) of meaning and interaction management are of
course not included in such an analysis. This fact may have important implications
given that the effort required to ground interaction, to create joint meaning may be



important for collaborative learning (Schwartz, 1995; Baker et al, this volume) and that
interaction management problems may hinder it.

5. Theoretical comparison

Theanalysispresented in the previous section shows that the set of learning operators
can be applied, at least at the superficial level, for describing knowledge refinement
along collaborative dialogues. However, it does aso revea three differences that we
analyse below: the number of agents, the multidimensionality of communicative acts
and the relation between knowledge and utterances.

5.1 The number of agents

An obvious difference between dialogue operators and machine learning operators is
theformer relate contentsof communicative actsuttered by different agents, whilst the
latter relate knowledge states of the same agent.. Nevertheless- at the knowledge level
at least - this difference is shallow. First, dialogue operators do function very well as
monologue operatorsasin lines[2] of figure 2 (A2 generaizes his own statement) or in
lines [3] (Al concretizes his own statement). Conversely, single-agent learning
operators can be viewed as dialogue operators in multi-agent learning: An agent A,
using operator X to solve a conflict between two divergent goals, can be re-
implemented into a multi-agent systems, in which two (sub-)agents A1 and A2 have
respectively each of these goals and negotiate with the same operator X.

Dialogue and learning operators can be adapted for the case of, respectively two or one
agent, becausethey areintrinsicaly binary operators, i.e. operators which describe the
differences between two knowledge states (as stored in a system or expressed by
agents), without indication whether these knowledge entities belong to one or more
agents. The notion of agent is anyway completely arbitrary in DAI. An agent can be
any functional unit inside the system: an 'edge detector' agent in a vision system, a
grammatical parser in a language processing system,... Sometimes, a single rule is
labelled as an agent, sometimes it is a whole rulebase. In psychology, there is a
'natural’ notion of agent, the human individual. Nevertheless, the notion of functional
agent (versus physical) emerged as well, for instance in Minsky's (1987) metaphor of
'the society of mind'. Similarly, in distributed cognition theories (Salomon, 1990),
some agents which are physically absent from the interaction, are considered as
functionally present in individual or group activities because their intelligence in
embodied in the tools used by thisindividua or this group. Within these theories, a
group of individuas itself is viewed as a single cognitive system. In other words,
psychologist can also arbitrarily determine what is the "unit”". Viewing a group as one
or more agents, viewing an individual as one or more agents, ... are methodological
choices. Different levels of granularity reveal different aspects of cognitive processes,
the observer has to choose a level of analysis where can be observed the phenomena
(s)heislookingfor.

In summary, the fact that operators relate the knowledge states of one or two agents
does constitute an intractable problem, sincewhat is counted as one agent appears more
and moreto be an arbitrary decision, both in DAI and in psychology.



5.2 The multidimensionality of communicative acts

Does an utterance conveys a unambiguous knowledge change? No. Given the
conversational context, the same utterance may imply different knowledge
transformations. Let us consider the example below. If one ssimply considers the
utterances, A2 seems simply to give an example of one class. But why did A2 provide
this example ? Assuming that A1 knows that whales do not live on the ground, A2s
utterance repairs A1l's over-generalisation. Hence, A1l's knowledge state should now
refine the "mammal" concept. The learning transformation in Al is therefore
generalisation (suppressing a non-relevant feature of the 'mammal’ concept), whereas
on thedialogue level, thetopic of discussion is made more specific.

[1] Al: All mammals live on the ground.
[2] A2: Whales are mammals.

This example illustrates the fundamental issue of the multidimensionality of speech
actsand reminds us that, in Baker's framework, the content transformation is only one
dimension for describing a negotiation process. In addition to domain-level relations,
established by transformations, agents also transform the meaning of utterances, in
order to check what was meant, to establish mutual understanding.

The gap which appears here between dialogue and learning is not intrinsic to these
processes, but rather related to the taxonomies at hand. In dialogue studies, a great
attention has been paid to the management of dialogue, and this attention is reflected by
the definition of specific operators. At the opposite, Michalski's taxonomy does not
include 'management’ operators. Control is however critica in many learning
processes. For instance, in incremental learning from examples, the selection of
relevant examples and counter-examples directly influences the learning outcomes. The
issue is to know if the operators used in dialogue management and in learning
management aresimilar. Theinteroperability of learning and dialogue operators should
hencedistinctively discussed at two levels, the knowledgelevel and the control level.

5.3 Therelation between knowledge states and utterances.

The previous point reveas the difficulty to match the knowledge expressed in
utterances with internal knowledge states. We face 3 fundamental issues.

* Does an agent believes what he says? In genera, yes. However, there is no
infallible algorithm for inferringmental states from utterances (although there may
be non-monotonic 'default’ methods - e.g. Perrault, 1990). For example, if one
student says " ... it's the different densities that explain the rebounds’, what does
this mean ? That the student believesthat proposition ? Not necessarily. In fact, we
often observed that students make "proposals’ - "might it be x ?' - without
necessary commitment to believing them (Baker, 1994).

* Does an agent answer to a particular utterance ? Not necessarily. The agents
knowledge spaces are amost never rendered entirely explicit in communication,
simply because this would make communication highly uneconomical. Hence, a
given utterance often does not relate directly to a previous one, but rather to the
agents perception of its underlying context. In the example below, A2 responds in
fact to the following proposition attributed to A1 (what Al is perceived to be
implying/implicating): "the steel ball rebounded higher than the rubber one, so the
differences in mass explain the different rebound behaviour".



[1] Al: look, the steel ball rebounded higher than the rubber one
[2] A2: it's not aquestion of mass !

» Doesan agent believes what he hears? Of course not. Thereis a probability that the
utterance receiver (1) does not hear correctly, (2) does not understand, (3)
understands but disagrees, (4) understands and agrees but cannot integrate in his
knowledge base, ... Thereis no guarantee that agents directly and completely
internalise  (in a Vygotskian sense) the knowledge publicly constructed in
dialogue.

All of these points raise deep linguistic and philosophical questions on the nature of
interaction, and the relationship between communication and mental states. Hence,
what we do in the remaining of this chapter is to see whether we can bypass these
theoretical dead ends if we consider how these differences can be overcomed for
practical goals.

6. Practical implications

6.1 Multi-agent learning

Despite these fundamental issues between beliefs and utterances, can the (partial)
interoperability of dialogue and learning operators contribute to implemented learning in
multi-agent systems (Weiss et al ., this volume)? We examine this issue, with our own
perspective where modelling human collaboration prevailson engineering issue.

What is the specificity of collaborative learning with respect to learning alone? Some
well-known mechanisms such as sharing the cognitive load can be easily be trandlated
into a multi-agent architecture. But, the more fundamental point is that, during
collaborative learning, different types of interactions occur between learners, which
seem to have cognitive effects. Thereal challengeis thereforeto model such verbal and
non-verbal interactions and their cognitive effects. This cannot be done with smple
‘information flow' models, where Agent-A learns X simply because Agent-B
communicates X to Agent-A. Such amodel would for instance contradict the facts that
theexplainer often gets more benefit than the explainee (Ploetzner & al, this volume).
Hence, itisinteresting to look for modelswhich deeply integrate dialogue and learning
(Dillenbourg, 1996).

Unfortunately, dialogue and learning have traditionaly been studied in different
branches of artificia intelligence. Traditionally, Al has been clustered into disciplines
such as problem solving, machine learning, computational linguistic, robotics, vision,
tutoring systems, ... . Agent architectures reflect this history: they generally dissociate
some core reasoning layer (knowledge representation, problem solving, learning,...)
from theinterface layer (incoming and outgoing messages, vision, ...). There has been
afew attempts to mergedifferent techniques and efforts to unify Al sectors e.g. around
SOAR (Rosenbloom & al, 1993). Nevertheless, the traditional Al clustering is not a
good starting point when one looks for what is common between learning and
dialogue.

Thefirst step to develop an agorithm which unifieslearning and dialogue is to improve
theinteroperability of learning/dialogue operators. People Power (Dillenbourg & Self,
1992) illustrates this principle. The artificia agent uses the same operators for
reasoning and for dialoguing: agree or refute. Dialogue was based on a binary tree of



argument where any argument could be agreed or refuted, where refutations could then
on their turn be agreed or refuted, and so on. When the artificial agent reasoned alone,
it used the same operators with itself, i.e. it was able to refute its own arguments, its
own refutations, and so forth. In other words, reasoning was implemented as an inner
dialogue. Learning resulted from the fact that the artificial agent replayed - modus
modendi - some parts of previous dialogue during its inner monologues. The principle
of similarity between dialogue and reasoning was applied here in its simplest way, the
set of operators being extremely simple (agree/disagree). Real dialogues are of course
more complex. An avenue for research is to design similar dialogue/learning
mechanisms but with aricher set of dialogue/learning operators?

The "reasoning as a dialogue with oneself" illustrates the applicability of dialogue
operators as learning operators. The reverse applicability, using learning operators to
describegroup interactions, can be implemented if one sees collaborative dialogues as
the process of building a shared knowledge set. Individual utterances can hencebe seen
as learning operators with transform the shared knowledge set.

However, the shared knowledge spaceis not a publicly accessible entity, as in the case
of knowledge states in a machine learning system - representations of it exist in each
agent. Some discrepancies are actually important for learning, provided that they are
detected and resolved. This brings us back to a point mentioned earlier concerning the
multidimensionality of negotiation. In addition to domain-level relations, established by
transformations, agents also transform the meaning of utterances, in order to check
what was meant, to establish mutual understanding of the joint space - a process that
has been described as "socia grounding” (Clark & Schaefer, 1989). Such grounding
or negotiation of meaning is required even in the case where agents attempted to make
all of their relevant knowledge states publicly accessible.

In other words, there is something "stereoscopic” in collaboration: Agent A exploits
differences between his own knowledge and his representation of Agent-B's partner
knowledge. This inter-partner comparison is different from what we saw so far.
Learning operators describe differences between successive knowledge states, dialogue
operators betweenmore or less successive utterances. In both cases, this sequentiality
limits somewhat the scope of potential differences. At the opposite, the differential
reasoning on two independent knowledge states must cover any possible difference,
until an empty intersection. The set of operators used both in learning and dialogue
should hence be extended to cover the mutual modelling process which supports the
construction of shared knowledge.

6.2 Integrating user interaction in machine learning

Thereisagrowing interest for integrating interaction with an expert user in a machine
learning system. Thegoalsis not properly to implement collaborative learning systems.
The main motivation is to gain robustness by adding user-system interactions. Valid
algorithms may produce incorrect results from correct data, ssimply because there is
some mismatch between the way in which datais provided and theway it is processed.
This is especially important as we deal with imperfect domain theories, where initial
data may be incomplete or may contain many biases. Knowing this, the user can
modify datathat they provideto the systemin order to allow it to refine the knowledge
that it has aready built. Of course, most machine learning systems allow very restricted
types of interactions with the user.



LEGAL (Mephu Nguifo, 1994) is one of such machine learning systems. It has its
foundationsfrom alearning model reported by (Mephu Nguifo, 1995). In such model,
the learning system interacts with an expert-user in order to: (1) learn knowledge from
initial dataprovided by the expert, (2) derivenew results from learned knowledge, and
(3) aso help the expert-user during the interpretation of learning results. LEGAL
receives initia input (binary dataand learning parameters) from the user. The user is
considered to be an expert of the domain. The learned knowledge arises from the
successive application of different transmutation functions such as specialization,
selection, characterization, generalization and discrimination over the lattice structure of
the binary data.

Thederivation of new resultsis a way to validate the learned knowledge. Unseen data
areprovided by the user to test the efficiency of the learned knowledge LEGAL uses
different kinds of derivation transmutations for this purpose. It can either use deductive
derivation or analogy inference by combining reformulation and similization
transmutation functions.

Asthe user works on anincomplete model, the last step becomes very important since
both expert and system can change their knowledge state depend on the results
interpretation. To allow this, the learning model includes the notion of proofs and
refutations (Lakatos, 1984; Hayes-Roth, 1986) through the mechanisms of objections.
Objections are built by the system as a way of proving its results. An objection is true
until the user refutesit as an explanation of the system decision. Whilst the acceptance
of objection could change the user knowledge, the refutation of an objection should
allow to modify the knowledge learned by the system.

This system is based on a static and cyclic process for controlling learning. It has been
extended to a dynamic model of control (Mephu Nguifo, 1997). This extended model
adds an indirect dialogue between the user and the system, by integrating various tools
with different purposes, and which are linked together in order to dynamically control
thelearning process.

Nevertheless, these systems basically remain cooperative since thereis a fixed division
of labour between the system and the user: the former has to learn, explain, or
recognize, and the latter must choose the initial data and analyse the system's results.
We are seeking more collaborative systems where the user and the system can negotiate
the data, the amount of noise, the heuristics, ... In collaboration, the system and the
human share roughly the same set of actions(Dillenbourg & Baker, 1996). Hence, any
reasoning step performed by the machine learning system has to be available aso to the
user through some dialogue function. The interoperability of dialogue and learning
operators may improve the collaboration between a human agent and the system agent
in two ways: (1) by increasing the modularity of functions, each agent being able to
contribute of asmaller step of the learning process, (2) by increasing the symmetry of
the distribution of functions, most functions being alocable either to the human or to
the machine agent.

7. Conclusions

This chapter compared two sets of operators which come from different research
communities. Learning operators have been proposed in machine learning where
knowledge states are directly inspectable. Dialogue operators come from psychology
and linguistics, they describe the content conveyed by the subjects actions, namely by



their utterances. The gap between dialogue and learning operators reflects the gap
between knowledge and action. For instance, we pointed out that dialogue operators
cover the'strategy" aspectsof dialogue (e.g. saying something one does not believe in
order to check one's partner agreement), while Michalski's learning operators do not
cover these 'strategy’ aspects (e.g. selecting which example to consider next). While
theinteroperability of learning and dialogue operators seems feasible at the knowledge
level, it seems more difficult to achieve it at the strategical level.

We mentionned that learning operators could be applied to the analysis collaborative
dialogues, not by modelling individual knowledge states, but by tracing the emergence
of a body of shared knowledge. Our recent experiments on computer-supported
collaborative work (Dillenbourg & Traum, 1997) show that this shared knowledgeis -
to a large extent - reified on the whiteboard, probably because the information
displayed on the whiteboard is persistent and hence the best place to co-construct
knowledge. Less persistent knowledge, such as decision with regard to the strategy,
are not displayed on the whiteboard. Hence, this shared knowledge set becomes - to
some extent - observable, which brings the dialogue setting closer to the machine
learning situation.
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