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Although computer modelling is widely advocated as a way to offer students a deeper understand-
ing of complex phenomena, the process of modelling is rather complex itself and needs scaffolding.
In order to offer adequate support, we need a thorough understanding of the reasoning processes
students employ and of difficulties they encounter during a modelling task. Therefore, in this study
26 students, working in dyads, were observed while working on a modelling task in the domain of
physics. A coding scheme was developed in order to capture the types of reasoning processes used
by students. Results indicate that most students had a strong focus on adjusting model parameters
to fit the empirical data with little reference to prior knowledge. The successful students differed
from the less successful students in using more prior knowledge and in showing more inductive
reasoning. These observations lead to suggestions for the design of appropriate scaffolds.

Introduction

Educational Value of Modelling

The educational value of computer-based dynamic modelling has been advocated
by many authors. Some emphasize the importance of the model as an artefact that
allows explicit visual representation of complex relations (for example, Bliss, 1994;
Hogan & Thomas, 2001; Mandinach, 1988; Schecker, 1993, 1994; Steed, 1994).
Others put more stress on the activity of constructing a model as a meaningful
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learning experience (for example, Milrad, Spector, & Davidsen, 2002; Penner,
2001; Spector, 2000; Stratford, 1997). This activity offers the opportunity for
students to think scientifically about the behaviour of complex phenomena (for
example, Bliss, 1994; Hestenes, 1997; Jackson, Stratford, Krajcik, & Soloway,
1996; Wild, 1996), to reflect upon their own understanding (for example, Gilbert,
Boulter, & Rutherford, 1998; Jonassen, Strobel, & Gottdenker, 2005; Raghaven,
Satoris, & Glaser, 1998; Schecker, 1993), and to test their mental models (Coon,
1988; Doyle & Ford, 1998; Penner, 2001). Crucial in this process is that model-
ling tools help students to externalize their ideas, so that they are open to criticism
and discussion (Devi, Tiberghien, Baker, & Brna, 1996; Rouwette, Vennix, &
Thijssen, 2000; Suthers, 1999). However, constructing a dynamic model is a
complex task, and it may not be surprising that novice modellers encounter prob-
lems in performing this task. In the literature several types of difficulties are
reported with regard to the task perception, the content addressed, and the tools
used.

At the level of task perception, it has been found that students tend to view a model-
ling task as an engineering problem rather than a scientific one. Instead of focusing
on the meaning of the model they focus on its output, and without proper reasoning
the behaviour turns to model fitting; that is, tuning model parameters until the model
output resembles the observed empirical data. Apart from a probable lack of success
of this behaviour, no “deep” reasoning on the model elements or model structure will
take place (Hogan & Thomas, 2001; Ogborn, 1999; Stratford, Krajcik, & Soloway,
1998). Such model fitting behaviour leads to a disconnection between the model and
content knowledge: the model becomes an artefact that has to “work”, not something
that provides explanatory power in understanding a phenomenon (for example, Bliss,
1994; Hogan & Thomas, 2001). Moreover, some students even do not detect
mismatches between the model output and the expected behaviour of the phenome-
non being modelled (Doerr, 1996; Steed, 1994; Whitfield, 1988). Finally, using
empirical data gathered to generate hypotheses is a difficult process for students (de
Jong & van Joolingen, 1998).

At the content level, students have difficulties conceptualizing the complex phenom-
ena that are typically addressed in computer-based modelling. Typical difficulties are
the time dependence of variables and multiple processes that cancel out. Students
tend to consider the influences of individual variables separately (for example, Doerr,
1995; Hogan & Thomas, 2001; Kainz & Ossimitz, 2002; Stratford et al., 1998). Also
feedback mechanisms are profoundly difficult. If there is a feedback loop present in
the system (e.g., the amount of interest on a bank account leads to an increase of the
main sum, which in turn leads to a higher interest next year) students often fail to
reason about interactive variables and display linear causal thinking instead, which
means that students trace one cause to one effect (for example, Kurtz dos Santos &
Ogborn, 1994; Löhner, Van Joolingen, & Savelsbergh, 2003; Riley, 1990; Zohar,
1995).

At the level of the tool, students find it difficult to express their ideas in a
modelling formalism. A typical modelling formalism, also used in the study
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presented in this article, is system dynamics (Forrester, 1961). System dynamics
employs Stocks (represent the central quantity of the model that builds up over
time), flows (determine how quickly the stock changes), auxiliaries (factors that
influence the flows), constants (factors with fixed values), and connectors (linkage
arrows to show direction of proposed relationships in a system). Expressing ideas
in this (or other) formalisms requires learning and involves gaining some experi-
ence. It has been found, for example, that students find it particularly complex to
represent flows as concrete elements in their model (Hogan & Thomas, 2001;
Kurtz dos Santos & Ogborn, 1994). Also, students have difficulties in deciding the
type of the variable they would like to implement into their model and, in addi-
tion, students frequently struggle in specifying the mathematical relationships
between variables in the model (Cox & Webb, 1994; Ossimitz, 2002; Sweeney &
Sterman, 2000; Tinker, 1993). At last, students find it difficult to translate their
own knowledge of the phenomenon into a computer model using the formalism of
an icon-based modelling tool (Ainsworth, 1999; Kurtz dos Santos & Ogborn,
1994).

These studies point to several structural difficulties students encounter during the
modelling process. However, to frame these problems and to provide appropriate
support, we need a thorough exploration of the reasoning processes students employ
during modelling. As such, process-oriented studies can shed more light onto how
levels of reasoning processes interact and contribute to successful or less successful
modelling.

Reasoning Processes During Modelling Activities

Several studies have aimed at describing novices’ reasoning processes. Most studies
have taken inductive viewpoints, either in the form of individual case studies (Hogan
& Thomas, 2001; Schecker, 1998; Stratford et al., 1998) or quantitative analyses
(for example, Fretz et al., 2003; Löhner, Van Joolingen, Savelsbergh, & Van Hout-
Wolters, 2005; Zhang et al., 2002). Other researchers have taken a normative
stance, based on expert views, leading to descriptions of the ideal modelling process
(de Jong et al., 2002; Hestenes, 1987; Schecker, 1998; White & Frederiksen, 1998).
An overview of the outcomes from the aforementioned studies was presented by
Löhner et al. (2005). This framework provides the basis for our explorative analysis.
We reconsidered some labels and definitions to encompass representative global
reasoning processes (see Figure 1).
Figure 1. Overview of reasoning processes found in studies on computer-based modelling (adapted from Löhner et al., 2005).This led to the following categories: Analyse, Inductive Reasoning, Quantify,
Evaluate, and Collect Data. Collecting data involves the gathering of information
through experimental inquiry. Because our focus is on the modelling process and
because data collection and interpretation through inquiry involves many difficulties
of its own (for example, Kuhn, 1989; Chinn & Brewer, 1993; de Jong & van Joolin-
gen, 1998), collecting data will not be further addressed in this article. The category
“Explain” was added to this framework to involve processes in which students artic-
ulate explanations to others. The way in which students justify model actions
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demonstrate how elaborate they reason about the material (for example, Schecker,
1998; Stratford et al., 1998).

The reasoning processes specifically associated with modelling are as follows: 

● Analyse: When students are analysing, they decompose the phenomenon they are
studying into parts and identify important model elements (i.e., quantities, or
relations between quantities) to be implemented in their model. Also, students
interpret model output or empirical data that are presented in tables or graphs.
Most of the modelling activities associated with this reasoning process are
performed during the orientation phase of a modelling task. During Hestenes’
(1987) “Description stage”, for example, students decide on the type of model
that will be constructed. In addition, they identify the variables and relations that
have to be implemented in their model. Hogan and Thomas’ (2001) define
“Model interpretation” as a process involving exploring output, which is
produced as tables or graphs. This involves students analysing graphs and tables
identifying how variables increase or decrease over time. Both definitions were
taken in our synthesis as indications of the process of analysing.

● Inductive Reasoning: Inductive reasoning occurs when students conjecture
hypotheses on how model elements interact and on how the model should
behave. This process implies a great deal of elaboration on the relationships
between the model structure and the behaviour of the phenomenon being
modelled, which makes it a complex process for students to perform (for exam-
ple, Schecker, 1993; Tinker, 1993). Stratford et al. (1998) use the term
“Synthesizing”, which involves students making statements about the content,

Figure 1. Overview of reasoning processes found in studies on computer-based modelling 
(adapted from Löhner et al., 2005)
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behaviour, or structure of the model as a whole (e.g., considering how the
model should behave, discussing the representation of their model, and discuss-
ing new relationships between quantities in the model), which can be catego-
rized as a process of inductive reasoning.

● Quantify: When students construct a preliminary model, they can make their
ideas about model elements and relations more precise by expressing them into
an executable mathematical format. This implies that quantities in the model are
specified with a starting-value and relations are worked out in equations. This
process of quantifying a model comprises the processes employed during
Hestenes’ (1987) “Formulation stage” and “Ramification stage” to a great
extent. The “formulation stage”, according to Hestenes (1987), involves
students using knowledge of physical laws to determine definite equations for the
phenomenon that is modelled. During the “Ramification stage” the special
mathematical properties and implications of the model are worked out. This
stage implies that equations are solved out by experimenting with parameters
and formulas.

● Explain: Involves the process in which students clarify to each other why model
elements are related; that is, they document the reason(s) why one factor causes
changes in another. The phase Schecker (1998) designates as “Documenting the
model” clearly falls under this process.

● Evaluate: Finally, students have to connect between the output from their model
and results obtained from experiments in order to evaluate and ultimately test
their model. In evaluating their model, students determine whether their model
is consistent with their own beliefs, with data obtained from experiments and/or
with descriptions of behaviour about the phenomenon being modelled. Model
evaluation leads to model revision activities, which involves modifying parts of
the model so that it better describes or explains a given situation. The process of
“Model revision” in Hogan and Thomas’ (2001) study involves similar activi-
ties. They define “Model revision” as a process in which students assess the
degree of fit between model output and expected or empirically confirmed
patterns.

The purpose of the present study is to understand the specific reasoning processes
that play a role during novice modellers’ activities. In order to gain insight into these
reasoning processes we need to investigate the occurrences as well as the quality of
these processes. More in particular, as the paragraph on student difficulties made
clear, students may focus on particular aspects of their model, while ignoring other
aspects (such as individual variables versus interacting variables or global model
structure) as well as use inappropriate arguments, or even no arguments at all, to
justify their reasoning. Therefore, in addition to identifying types of reasoning, the
focus of the conversation and the types of argumentations used need to be under-
stood. For these features—focus and argumentation—we developed a scheme for
analysis in a more inductive fashion on basis of the obtained protocol data. The main
research question in this study therefore is: 
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● Which reasoning processes, employed by novice modellers during a computer-
based modelling task, need support?

This question encompasses the following subquestions: 

1. What features are relevant to describe novices’ reasoning processes during
computer-based modelling?

2. What distinguishes successful from less successful novice modellers?
3. Which reasoning processes are difficult for novice modellers to perform?

Method

Participants

This study involved 38 students from 11th-grade pre-university education, with a
major in science. Students had no prior experience with system dynamics models.
Students’ age ranged between 16 and 18 years. During the task, participants worked
in pairs, which were composed by having the students choose their own partners
from within a group of familiar students.

Materials

Participants were presented with a task asking them to explore and revise a model
that described the distance covered by an ice-skater.1 Since participants had no prior
experience with modelling, a completely open modelling task would be too complex
for them to be successful within the time constraints of the experiment. Therefore,
participants were given an incomplete model as a starting point. Such a model
revision task enables the novice modeller to concentrate on trying to comprehend
and improve a model without having to start from scratch. The modelling task was
implemented in PowerSim, a modelling tool based on system dynamics (see Figure
2). PowerSim uses the five model building blocks characteristic for system dynamics
modelling: stocks, rates, auxiliaries, constants, and connectors. To insert a model-
ling element, students can drag and drop the icons on the screen they think are rele-
vant for the phenomenon being modelled, creating a qualitative diagram of the
phenomenon. While creating this diagram, students can quantify these elements by
entering values and formulas. Once the model is quantified it can be executed.
When students run their model, PowerSim automatically generates the differential
equations required to perform calculations. The results of simulations runs over
time can be displayed as graphs or tables.
Figure 2. Screenshot of a model in PowerSimThe modelling task was presented in a cover story in which a scientist attempted
to construct a model of this phenomenon. Participants were provided with measure-
ments that were obtained by the scientist, which they could use to test the model.
The empirical data was presented in two graphs, one for the distance covered by the
skater (see upper right-hand side of Figure 2) and one graph for the velocity of the
skater (lower right-hand side of Figure 2). Participants’ task was to revise their
model in such a way in that it would provide a good match with the data. Successful
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completion of the task would require the identification of two friction forces and of a
feedback loop that runs from velocity to air resistance. This feedback implies that a
skater at a higher velocity experiences more air friction, which consequently leads to
a more rapid decrease in velocity.

The present study made use of data that were collected in order to compare the
effects of different initially provided models and the effects of two sets of data that
differed in quality. Therefore, dyads received slightly different versions of the
modelling task. For the present purpose data could be pooled, since no significant
differences were found between these settings on the dependent measures employed
in this study.

Procedure

In order to become acquainted with system dynamics modelling in PowerSim, each
student individually worked through an instruction manual. This manual was
adapted from “Computer-supported modelling: Manual PowerSim”,2 which is
developed and disseminated to Dutch schools by the Centre for Science and Mathe-
matics Education at the University of Utrecht. In this instruction manual, students
are presented with an example model of a water tank. The simplest system imagin-
able to illustrate fundamental aspects of modelling and the behaviour of dynamic
systems is that of a water tank containing a faucet and a drain. The volume of water
in the water tank is represented by the stock variable (i.e., reservoir variable), and

Figure 2. Screenshot of a model in PowerSim
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the flows represent respectively the inflow of water into the water tank via the faucet
and the outflow of water from the water tank via a drain. The water tank model, its
elements (i.e., variables and relationships between variables) and how it can be built
in PowerSim were explained to students in the instruction. Also, students could
execute and revise parts of the water tank model in the PowerSim environment. The
instruction took about 1 hr. Subsequently, participants were grouped into dyads.
Participants were informed that they were going to explore and subsequently revise
models working in couples. Next, dyads read the modelling task and were presented
with the initial model version and with the data. Dyads were asked to collaboratively
revise the model for approximately 1.5 hr.

Data Collection

The primary source of data consists of the verbal protocols of the collaborating
dyads. Modelling actions and verbal communication between students were obtained
using the program Lotus ScreenCam™. This program recorded all onscreen actions
and audio. Verbal protocols were obtained by transcribing these recordings. After an
initial qualitative, exploratory analysis, the transcripts were subsequently segmented
into episodes. Episodes were scored using an analysis scheme that was developed on
the basis of the qualitative analyses of the protocol data using our framework of
reasoning processes as reference. Scoring the protocols was performed employing the
program MEPA (Erkens, 1998). Unfortunately, because of recording software failure
the verbal protocols of only 13 dyads could be analysed.

The quality of revised models was also assessed. The scoring was based on both the
degree of model fit and the conceptual structure of the model. The model fit score,
ranging from one to five points, was based on face value. The score for structure
consisted of a score for correct/incorrect quantities and a score for correct/incorrect
relationships between quantities. For each correct quantity or relation in the model,
one point was awarded. For each incorrect quantity or relation two points were
subtracted. The model structure score was subsequently rescaled to a five-point
scale. Addition of the two components led to a total model quality score on a
10-point scale.

Results

Exploratory Case Studies

The goal of the data analysis was to characterize the reasoning processes students
employ during computer-based modelling activities. To that end, we started with an
exploratory qualitative analysis of the performance of selected dyads. Selection was
based on their model scores: we chose a high, a middle, and a low scoring dyad. As
an initial scheme of analysis we used our synthesis of reasoning processes identified
in the literature as a starting point. In examining these protocols, the focus of
students’ discussions and type of argumentation were also considered. Based on
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these ideas and a detailed study of the protocol data we subsequently modified the
analysis scheme in several rounds of analysis.

Case 1: High performing dyad

Dave and Roel created an excellent model (model score: 10), which was also
reflected in the quality of the processes in which they engaged. Dave and Roel were
very systematic in their approach, very elaborate in their reasoning, and critical in
their discussions about their model. While implementing model revisions they care-
fully considered the semantics of the variables, relations, and the behaviour of their
model. Also, they attempted to keep their model as simple as possible during the
whole task.

The critical stance of Dave and Roel towards their model is exemplified by the
following episode. Directly before this episode they were trying to fit the output of
their model to the given data by adjusting parameters. Since their attempts remained
without success, they engaged in an elaborate model evaluation: 

1 D Because ice friction is a force, deceleration is acceleration, how much does the
skater decelerate per time unit

2 R Negative acceleration
3 D Negative acceleration
4 R So the ice friction
5 R But look, deceleration in the model is equal to ice friction, while the ice

friction also has to be negative, so that is not right
6 D So that is a mistake in our model
7 R Let’s read the assignment again
8 D Let’s start with the most important, we have the ice friction
9 D Because we have to go from force to uhh velocity
10 R Force, is it not possible to do that with the Work law?
11 D Yes, but it would come in handy if we had the formula’s, but I do not know

them by heart
12 R It says here that ice friction is equal to deceleration, that is not right
13 D That is absolutely not possible, there has to be a step in between
(Protocol: ac_16, start: 0′16′20, duration: ′52s, Process-code: evaluate; Focus-code:
relation; Argumentation-code: physics knowledge)3

In this excerpt, Dave and Roel are evaluating a relation between variables. They
conclude that the relation is incorrect and try to come up with a correct relation
between these variables using their knowledge of physics as argumentation. They argue
that the two variables in their model (i.e., “ice friction” and “deceleration”) cannot
be related in the way it was implemented (lines 1–5). Therefore, they try to find a
physical law or formula that includes both variables in order to be able to compute
one from the other (lines 8–13). Although they seem to know the relevant formulae,
it appears that they had difficulty in translating these formulas into their computer
model.

Dave and Roel acknowledged the importance of focusing on how the different
relationships in their model affected the model output, in order to figure out how
their model works: 
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R So we have to ask ourselves when the skater is at 0 m/s and how much he must
skate

D Yes, only he is not constant
D If velocity decreases
R The deceleration is constant
D No, not any more
R Why not?
D Because air friction is now dependent on your velocity
R Oh, let’s delete air friction then
D Let us first begin with uh
R It is not realistic
D Let’s first investigate the influence of ice friction on the skater’s velocity
(Protocol: ac_16, start: 0′37′40, duration: ′25s, Process-code: Inductive reasoning;
Focus-code: model structure; Argumentation-code: experimental data)

In this episode, Dave and Roel reason inductively about relationships in their model,
concluding that they have to proceed investigating individual relationships in order
to comprehend the behaviour of their model. Therefore, Roel and Dave delete the
variable “air friction” from their model in order to separately investigate how ice
friction affects the velocity of the ice-skater.

An episode in which Dave and Roel reasoned inductively about a key relationship in
their model, shows that they also base their arguments on everyday experience: 

D Yes do you see, you have to do something with air friction in order to relate it to
velocity

D Air friction depends on your velocity, if you go faster then your air friction is higher.
If the wind goes faster, if you have a higher wind velocity, then your air friction is
higher. When there is no wind, you do not notice air friction if you are riding your
bike, when wind force is 12 then you will not be able to go forward

D If you are riding your bike and you ride with 1 km/h than you would not feel a
thing

R The harder you ride, the better
D But if you go with 20 km/h, for example from a bridge, then you will notice the air

friction
D So the air friction comes in handy, now you have to combine it with velocity
(Protocol: ac_16, start: 0′42′12, duration: ′42s, Process-code: Inductive reasoning;
Focus-code: relation; Argumentation-code: experiential knowledge)

In this section, Dave and Roel reason about the relation between “air friction”
and “velocity”: air friction increases with higher velocity as we know from every-
day experience. This leads Dave and Roel to recognize the need for the imple-
mentation of a feedback loop (i.e., between velocity and air friction) in their
model.

Dave and Roel engaged in an elaborate approach to the modelling task, which was
reflected in the use of high-quality reasoning processes. They often reasoned about
relationships between quantities in their model and critically evaluated how their
model worked. Mostly, their focus was on relationships between variables or on the
structure of their model. In addition, they frequently referred to experiential knowl-
edge as an argumentation for model revisions. Finally, they often referred to physics
formulas they had learned in class.
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Case 2: Medium performing dyad

Laurette and Hinde created a reasonable model (model score: 7). They mainly
analysed and identified individual elements in their model without elaborating
much on how their model could be improved. Instead of employing their own
knowledge during modelling, they often referred to the degree of model fit as argu-
mentation for model revisions. They also showed a concern for their model being a
realistic representation of the phenomenon they were modelling.

In a significant part of their protocol Laurette and Hinde were engaged in unsuc-
cessful model fit behaviour: 

L The green line {the model graph} has to run as the other
H Yes! It has to go through the little dots {the data}
L Oh
H But uh
H Yes, you know if you notice the graph, like the one we just had, than we had given

ice-friction the value 1
L Yes
H And then the graph went through the first dots, this graph, look
(Protocol: an_23, start: 0′10′17, duration: ′24s, Process-code: quantify; Focus-code:
quantity; Argumentation-code: correspondence model graph and data)

In this episode Laurette and Hinde quantify the quantity “ice friction” in their model
to improve the fit between the model graph and the data points. Note that Laurette and
Hinde implement this revision without further thinking about why their model yields
this particular output.

Next to this superficial model fitting, they primarily analysed and discussed (rele-
vant) modelling entities (i.e., quantities): 

L This one {the model graph} is more correct
H Hmmhmm
L Shall we include another variable, did we forget something?
H Yes, you also have air resistance, is that right?
L Eeeuh yes but
H But that has nothing to do with the ice-skater in this problem
(Protocol: an_23, start: 0′17′58, duration: ′12s, Process-code: analyse; Focus-code:
quantity; Argumentation-code: experiential knowledge)

Here, Laurette and Hinde identify a relevant variable that may be included in their
model (i.e., “air resistance”) but refute the idea on the basis of experiential knowledge.

In a few episodes in which Laurette and Hinde were reasoning inductively about
their model, but they did not refer to relevant school physics knowledge: 

H And this arrow indicates that it, that the velocity
L That it is a cycle, so if velocity is becoming less
H The ice friction
L Influences the distance
L Yes, the distance becomes less but the velocity with which the distance decreases
L That changes
H Eeeeuhm
L But
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H A little
L Deceleration is equal to ice friction
H Do we have something that also influences the deceleration?
(Protocol: an_23, start: 0′18′23, duration: ′31s, Process-code: Inductive reasoning;
Focus-code: model structure; Argumentation-code: none)

In general, Laurette and Hinde were mainly engaged in analysing modelling
elements and did not justify their model revisions. The focus of Laurette and Hinde
was similar to that of Dave and Roel, but the quality of their reasoning processes was
less, because of a lack of argumentation. Nonetheless, Laurette and Hinde showed a
preference for applying experiential knowledge in their thinking about their model.

Case 3: Low performing dyad

Marije and Lola constructed a poor model (model score: 3). They spent much of
their time attempting to adjust the model parameters to match the graph to the
experimental data. They hardly came up with structural model revisions themselves.
They relatively often requested guidance from the experimenter. These students did
not seem to understand the purpose behind their model in specific and behind
computer modelling in general. The main part of the protocol obtained from this
dyad consists of episodes in which they were quantifying individual quantities: 

M Here, wait try this one
M No, that one
L No, that is not correct
M No
L There has to be something, ice friction
L I set ice friction on 8
M Let’s see what it {graph} does
(Protocol: an_20, start: 0′08′02, duration: ′17s, Process-code: quantify; Focus-code:
quantity; Argumentation-code: none)

Marije and Lola frequently quantified quantities in their model without consider-
ation of why they chose particular values. It was quite difficult for Marije and Lola to
see what specific kind of change was needed in order for them to get the model
output fit the empirical data: 

M No
L HHe {the graph} is becoming longer, much longer
M Much longer indeed
L This is not correct
M Huh?
L This is not okay
M Eeeuhm
L It must decrease much faster from here
(Protocol: an_20, start: 0′19′29, duration: ′13s, Process-code: evaluate; Focus-code:
model fit/ model output; Argumentation-code: none)

This protocol fragment shows Marije and Lola evaluating the degree of model fit, but
they do not know how to revise their model such that the fit improves.
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In cases in which Marije and Lola identified quantities to include in their model,
they did not provide any argument for this revision: 

M Shall we make another square for the air-friction?
L huh?
M A square{i.e. constant}for air-friction?
L Yes
(Protocol: an_20, start: 0′20′28, duration: ′06s, Process-code: analyse; Focus-code:
quantity; Argumentation-code: none)

In this episode, Marije and Lola suggest to include the variable “air-friction” as a
constant to their model, without clarifying why they want to add this quantity.

In general, Marije and Lola’s approach to modelling can be represented as model
fit behaviour. Their main focus was on individual quantities and they did not take
into account relations between variables. Finally, they did not refer to their own
experiential knowledge during modelling and did not provide evidence for their
claims. Marije and Lola only shallowly processed the model task and they did not
make the link between the behaviour and structure of their model.

These case descriptions indicate the range of reasoning processes that were to be
found in the protocols of the other dyads participating in our study (see Table 1). In
the example excerpts given earlier, it becomes clear how these episodes can be attrib-
uted to the reasoning categories listed in the introduction. However, for a great deal
of episodes no clear reasoning process could be discerned, as can be seen in Table 1.
Consequently, new categories had to be added to our initial scheme in order to
capture these activities.

Table 1. Percentage of time spent on global reasoning processes and model score for each dyad

Global reasoning process

Dyad Analyse
Inductive 
Reasoning Quantify Explain Evaluate Other

Model score 
(maximum 
score: 10)

Mark & Hugo 2.21 12.95 31.46 0.58 11.46 41.34 8
Jordy & Harry 7.04 9.96 22.68 1.93 8.97 49.42 7
Dave & Roel 7.75 16.22 35.44 1.98 3.39 35.22 10
Harma & Annemarie 6.99 7.41 32.82 0 8.51 44.27 5
Jaap & Robert 7.7 5.08 35.99 0 13.03 38.2 6
Rik & Corry 5.13 6.62 37.52 0 5.24 45.49 7
Gretha & Anique 3.31 8.19 39.07 0 4.88 44.55 5
Laurette & Hinde 9.27 11.36 35.57 0 4.4 39.4 7
Jos & Nadira 3.5 9.06 37.34 0 2.9 47.2 6
Marije & Lola 6.38 3.86 49.34 0 11.05 29.37 3
Paul & Benni 0.56 7.26 43.31 0 3.79 45.08 4
Denise & Astrid 4.23 4.62 38.53 1.1 6.46 45.06 4
Stephan & Sjoertje 2.38 0.74 31.03 0 1.94 63.91 8
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The cases also show the need for additional scoring of students focus (i.e., the
model elements students consider) during modelling and scoring of prior knowledge
used, to grasp the differences in quality of the reasoning processes. For example, the
less successful group (i.e., Marije and Lola) tended to focus on individual variables,
which suggests that they did not see how model behaviour depends on the influence
of interacting variables. This is in contrast to Dave and Roel who did reason about
relations. From the aforementioned it becomes clear that, in order to describe the
reasoning processes of novice modellers, we need a coding scheme that takes into
account the focus of reasoning as well as the underlying arguments that are put
forward by the modeller.

Coding the Data

Processes like analysing or explaining involve several turns by both partners in a
dyad. Therefore, the unit of analysis was determined to be at the “episode” level, an
episode being a period of coherent continuous talk on a single issue, rather than
single utterances. As a practical operationalization, episodes were segmented on the
basis of the following non-content criteria (cf. Chi, 1997): 

● Following each run of the students’ model.
● Following an interval of more than 15 s during which nothing is said.
● The interval during which the experimenter intervenes in the modelling process is

a segment by itself.

In the majority of cases these criteria would lead to acceptable segments; however,
some segments were of a much too long duration. Therefore, an additional criterion
was applied: 

● The maximum length for a segment is 1 min. If a segment lasts longer, the
segment will be more closely analysed in order to see whether segmentation is
possible on the basis of changes in reasoning process or changes in focus (often
signalled by words as: “Okay …” or “Now ….”).

The segments obtained using this procedure were classified according to the reason-
ing process that was employed by students. We employed the definitions of the five
clusters of reasoning processes (i.e., Analyse, Reason, Quantify, Explain, and Evalu-
ate) identified in our synthesis of the literature. Four categories were added to the
coding scheme in order to characterize episodes in which no clear reasoning process
was shown, namely: 

● Guiding by experimenter: Guidance by the experimenter involves: (a) providing an
explanation of the assignment, (b) explaining the tools and formalism used in
PowerSim, and (c) encouraging the collaboration.

● Read and paraphrase: Students read, paraphrase, or discuss the assignment or
modelling actions. When students are talking about the assignment or when they
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mention the actions they are performing, that episode is coded with read and
paraphrase.

● Off task: Students talk about subjects that are unrelated to the assignment at hand.
● Other: Other processes that are not included in the analysis scheme. For example,

inaudible murmur is coded as other.

For coding the focus of reasoning we introduce the following categories: 

● Quantity: Students discuss quantities (i.e., constant or stock).
● Relation: Students discuss relations or interaction(s) between quantities.
● Model output: Students discuss the output generated by running the model,

including the degree of fit between the output generated by their model and the
experimental dataset.

● Data points: Students explicitly discuss the experimental data in the graph.
● Model structure: Students discuss the global structure of the model, for example:

How the quantities are linked. In order to score this category, the episode has to
involve more than one relation in the model.

● Modelling actions/the tool: Students mention modelling actions, adding or deleting
quantities, running the model, or adding or deleting relations. This category is
also scored when students are trying to figure out how PowerSim (i.e., tools,
buttons, and formalism) works.

● The assignment: Students talk about the modelling assignment (i.e., the ice-skater
problem).

Finally, we categorized the types of argumentation employed in reasoning: 

● None: Students make no reference to specific knowledge in their reasoning.
● Physics knowledge: Students use terminology, concepts, or formulas that are used

in physics. For example, if units for variables in the model are mentioned.
● Mathematics knowledge: Students use terminology, concepts, or formulas that are

used in mathematics. For example, if students talk about the mathematical func-
tion of the model graph.

● Experiential knowledge: Students refer to experiential knowledge. For example, if
students mention their own experiences.

● Correspondence between model graph and data: Students refer to (mis)match
between the model output and experimental data. For example, students quantify
a quantity in their model and refer to the degree of match between the data and
the model graph (i.e., model fit behaviour).

● Experimental data: Students refer to the data points without explicit reference to
the model fit.

The complete coding scheme and the criteria for assigning the codes are presented
in the Appendix. Inter-rater reliabilities for each of the three subcodes were
determined by comparing the ratings of two independent judges (n = 202; Process-
code, Cohen’s kappa = 0.742; Focus-code, Cohen’s kappa = 0.764; and Argumen-
tation-code, Cohen’s kappa = 0.533). The inter-rater reliability for the first two
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categories can be regarded as satisfactory (Heuvelmans & Sanders, 1993). The
Cohen’s kappa for the argumentation code is low, and consequently findings with
respect to this aspect should be taken with care.

Quantitative Results

The coding scheme was now applied to the entire set of protocols. Because protocols
differ in length, and because protocol episodes are of different length as well, report-
ing frequencies give a skewed image. Therefore, frequencies were converted to
proportion of total time for each dyad, and further analyses are based on these
proportions. Data from these analyses are presented in Tables 2 and 3.

From Table 2 it becomes clear that the amount (re)reading and paraphrasing (of
the modelling actions and/or modelling tool and of the assignment) and experi-
menter guidance is high for all dyads. Also, the time spent on quantifying is rather
high. Many quantifying episodes have their focus on a single quantity, rather than
interactions between quantities. Quite often in these episodes reference is made to
the degree of correspondence between model graph and data, whereas only a few
refer to prior knowledge (see Table 3). The conjunction of these features clearly
indicates model fit behaviour. By contrast, most dyads did not spend much time on
inductive reasoning; explaining seems to be almost a missing category; and use of
prior knowledge is relatively rare.

In order to examine whether students follow a systematic approach, in that there
is a preferred sequence of activities, a transition analysis was performed. The analy-
sis was conducted on transitions between episodes, which means that a significant
transition occurs when the number of observed transitions between two reasoning
processes is significantly higher than may be expected on the basis of the distribution
of coding (test of uni-directional transitions using z-scores, taking into account the
conditional probabilities for every transition). The significant successions between
the global reasoning processes found for the dyads in our study are shown in Figure
3. The line thickness indicates the magnitude of the difference between observed
frequency and expected frequency.
Figure 3. Transition diagram, displaying significant transitions between reasoning processesWhat is apparent from Figure 3 is that students frequently switch from analysing,
inductive reasoning, evaluating, or reading to guidance from the experimenter and
vice versa. This means that after episodes in which students employed these
processes, they inquired for support from the experimenter. In addition, Figure 3
reveals that quantifying, reading, and inductive reasoning are persistent activities, in
that they tend to extend across multiple episodes.

Finally, to investigate whether particular types of reasoning processes are associ-
ated with the quality of the model students created, we computed Spearman rank
correlations between types of reasoning processes and the quality of the students’
model. There was a significant negative correlation between the model score and the
amount of time spent on quantifying quantities without augmentation (r = –51, p =
0.036). In addition, a significant positive correlation was found between model score
and inductive reasoning about relationships between quantities with reference to
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experiential knowledge (r = 0.46, p = 0.049), and an almost signification positive
correlation was found for inductive reasoning with reference to physics knowledge (r
= 0.45, p = 0.082).

Conclusion and Discussion

The first part of our research concerned the features of reasoning processes that are
needed to describe novices’ computer-based modelling processes. In order to iden-
tify these features, we started from a framework based on available research, and
then refined this framework on the basis of a qualitative analysis of protocol data.
This resulted in a framework containing the following dimensions: (a) type of
reasoning process, (b) topic focus, and (c) type of argumentation. Individual case
studies made clear that all three dimensions are needed: apart from the occurrence of
reasoning processes, it is important to also assess their quality. The first two dimen-
sions could be reliably scored, whereas the type of argumentation remained difficult
to decide on.

The second research question was how successful and less successful novice
modellers differ in their reasoning. This question was first answered qualitatively,
on the basis of three case studies, and next these answers were corroborated using a
quantitative analysis. In the qualitative analysis we found that the more successful
students, in contrast to the less successful ones, tended to justify their reasoning in
terms of both experiential and physics prior knowledge. The less successful students
were more narrowly focused on the model and the model output. Moreover, the
more successful students regarded the model more as a whole, taking into account
the model structure, whereas the less successful students mostly considered only
one quantity or relation at a time. In summary, the weaker students spent a

Analyse  Quantify 

Evaluate  Explain 

Guidance  Off task  Other  

Read  

Inductive reasoning  

Figure 3. Transition diagram, displaying significant transitions between reasoning processes



1714 P. H. M. Sins et al.

relatively large part of their time manipulating parameters in order to let the model
fit the given data, showing model fitting behaviour. The quantitative analysis of the
protocols confirmed this picture. Correlation analysis revealed that students who
spent much time on quantifying quantities without argumentation (indicative of
model fitting behaviour), arrived at lower quality models. Students who spent their
time on inductive reasoning with reference to prior knowledge arrived at better
models.

The third research question was which reasoning processes are difficult for novice
modellers to perform. It was found that, in general, students encountered a great
deal of difficulties during the modelling task. This was indicated by the finding that
the percentages of time spent on episodes in which students prompted for support or
(re-)read the assignment were high. In addition transition analysis showed that
episodes in which students were engaged in analysing, inductive reasoning, evaluat-
ing, or reading were often followed by episodes in which they asked for support from
the experimenter.

The particular problems students had during the modelling task are discussed
according to the three levels at which difficulties are known to occur. At the level of
task perception, we found frequent evidence of model fitting behaviour. In addition,
our case study revealed that the less successful students were found to be more
engaged in model fitting compared with the more successful dyads. This model
fitting behaviour was, furthermore, found to be negatively associated with the qual-
ity of the students’ model. Similar patterns were found in a case study by Ogborn
(1999). This indicates that most students were not able to go beyond employing the
model as an artefact instead of using the model as a means to comprehend the
behaviour of complex phenomena. At the content level, the quantitative analysis
indicated that, on average, students did not often connect to prior knowledge,
which was taken as an indication that students had difficulties with relating the
computer model with their own conception of the phenomenon being modelled (cf.
de Jong & van Joolingen, 1998). This is in line with findings in earlier case studies
(Hogan & Thomas, 2001; Stratford et al., 1998; Zhang et al., 2002). In addition, it
was found that less successful students focused more often on individual variables
in their model, implying that they had difficulties with considering interactions
between variables. Finally, at the level of the tool, the case study and the quantita-
tive analysis revealed that, even though students had received an instruction in
dynamic modelling with PowerSim, they still had difficulties in grasping the formal-
ism used by PowerSim. This was reflected in the finding that students’ reasoning
focused on the modelling tool during a great deal episodes (cf. Cox & Webb, 1994;
Tinker, 1993).

From these findings it can be concluded that modelling of dynamic phenomena is
a complex undertaking for novice modellers, and that probably more experience is
needed in order to obtain a learning benefit. Consequently, appropriate support
should be provided, either in the modelling tool or in the classroom context to
scaffold students’ reasoning processes. Note that our sample consisted of students
with no prior experience with computer-based models. Thus, results of the present



The Difficult Process of Scientific Modelling 1715

study and implications for scaffolding are applicable only to modellers who start to
learn to use system dynamics models.

In the present study, it was found that when students employ their own knowl-
edge during modelling activities, they constructed models of higher quality. Scaf-
folds should, thus, encourage students to activate their prior knowledge not only
during modelling, but also before engaging in any modelling activities. When
students are initially prompted to think about variables and relations that could play
a role in explaining the behaviour of a dynamic phenomenon, activating whatever
knowledge resources they have available, this may serve as an anchor for the further
modelling process (for example, Clement, Brown, & Zeitsman, 1989; Hammer,
2000). Ideally, this knowledge activation takes place within a collaborative setting in
which students can discuss their models with other groups (for example, Rouwette
et al., 2000).

The identification and articulation of specific modelling (sub)goals also forms an
essential aspect during the process of prior knowledge activation. When students
have clear (sub)goals to attain, the modelling process will be more structured in the
sense that students are guided in building an understanding of how the structure of
their model influences the behaviour of the model. In the present study, students
were found to be primarily engaged in superficial model fitting behaviour, instead of
attempting to understand the association between the structure of their model and
the phenomenon being modelled. By leading students to examine one model revi-
sion at a time, students should be able to discern what types of revisions produce
what kinds of output, thereby building their understanding of the system they are
modelling (for example, Hogan & Thomas, 2001).

In order to motivate students to reason more deeply about their model, scaffolds
could be offered to enable students to test their model against multiple datasets.
This means that they have to compare not only model output to data, but also differ-
ent sets of data with each other. This may be a more fruitful learning experience for
students, since multiple datasets trigger students to think of alternative variables or
relations in the model revision process. As a result, students may not be primarily
engaged in model fit behaviour since their model has to be tested against several
datasets.

In addition, students should be asked to model phenomena of which they already
have knowledge. This allows them to dedicate cognitive processing resources to
translating their mental model into a system dynamics model instead of having to
invest too much effort in identifying relevant variables and relationships between
them. It is important to free up that capacity for mastering modelling techniques
during early stages of learning to model (Hogan & Thomas, 2001). This stance is
supported by the finding that students in the present study had difficulties with
comprehending the system dynamics modelling formalism of PowerSim, even after
they received an instruction.

Löhner et al. (2003) investigated the effect of two different external representa-
tions used in computer-based dynamic modelling tools on performance of novice
modellers. They compared a text-based model representation, in which students
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have to provide a list of equations before the model can be executed, with a graphical
representation, in which the model is built by qualitatively linking variables. Results
indicated that the different representations support different phases in the modelling
process. Löhner et al. suggested that the graphical representation would be more
suitable for the beginning of the modelling process, since this representation enables
students to readily identify and implement variables and relationships into their
model. The text-based representation may be more fit for more advanced modelling,
since students have to provide complete mathematical expressions in order to imple-
ment model elements.

In the present study, students revised a graphical model within a quantitative
system dynamics modelling environment. Given the finding that students, in the
present study, had difficulties with using this tool, it is suggested that novice modellers
should first be asked to construct a qualitative graphical model. When constructing
this model, students can focus on important variables and relationships and on
mastering the modelling formalism without having to be concerned about the math-
ematical form of the relationships. Subsequently, they can proceed to quantify the
relationships between variables in a semi-quantitative form. This means that students
can choose the qualitative form of each individual relation (such as “If A increases,
then B also increases”). Finally, when students are more experienced with the model-
ling tool, relationships between variables can be filled in quantitatively. A computer-
based learning environment in which this kind of model progression (i.e., from build-
ing qualitative, semi-quantitative, to quantitative models) is implemented is Co-Lab
(Van Joolingen, De Jong, Lazonder, Savelsbergh, & Manlove, 2005; for more infor-
mation see also: www.co-lab.nl). The modelling tool in Co-Lab resembles PowerSim
in that the syntax is also based on system dynamics modelling. The modelling tool in
Co-Lab enables students to specify variables by selecting pre-defined qualitative rela-
tions, drawing graphs or entering mathematical formulas.

Finally, in the present study it was found that less successful students primarily
thought about individual variables and relationships while revising their model,
which implies a bottom-up approach to modelling (Gobert & Discenna, 1997;
Hogan, 1999; Hogan & Thomas, 2001). Students who are employing a bottom-up
approach to modelling do not consider how local model revisions impact the behav-
iour of the model as a whole. More successful students employed a top-down
approach to modelling, in contrast, which involves students considering interactions
between variables in their model when revising their model. These students elabo-
rate on the dynamics of their model when they change something in their model and,
thus, take a more holistic view on their model. Students should be scaffolded to
develop these more productive approaches to modelling, in which they learn to
reflect on the impact of dependencies between variables on the dynamic behaviour
of their model. When students are introduced to modelling, it is argued that the top-
down approach could be scaffolded by offering an expert model in order for them to
productively model a certain phenomenon. When students take a top-down
approach to modelling, they enhance their understanding of the workings of their
model and ultimately learn more about the phenomenon being modelled.
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Important to consider here is that the aforementioned scaffolds are suggestions
offered to tackle the difficulties novice modellers have during the initial phases of
modelling. Further research is needed in order to test these proposals.

Notes

1. Adapted from “Computerondersteund modelleren natuurkunde: Een sportieve beweging”
[“Computer-supported modelling physics: A sportive movement”] (courtesy of Koos Kort-
land, Kees Hooyman, and Development Group Dynamic Modelling, University of Utrecht).

2. Translated from the Dutch “Computerondersteund modelleren: Basishandleiding Power-
sim”, which is available online (http://www.cdbeta.uu.nl/model/literatuur/basishan-
dleiding.pdf).

3. Below each protocol segment the following information is provided: protocol number, start
time, duration of the episode and the ultimate scoring of the episode employing our scoring
scheme.
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Appendix: Coding scheme for modelling processes

Type of cognitive process (i.e. what are they doing?)
Guiding by experimenter The experimenter provides guidance to the students. The 

scoring starts with a question of one of the students that is 
addressed directly to the experimenter or by a spontaneous 
utterance from the experimenter

Evaluate Students positively/negatively evaluate an element(s) in relation 
to their model. Students make a (elaborate) value judgment on 
a modelling element.

Explain Students explain to each other how elements within their model 
work or why they were included. An explanation must be 
preceded by a clear-cut question of one of the students

Quantify Students talk about quantifying or specifying a quantity or 
relation within their model.

Inductive Reasoning Students elaborate upon/about elements within or with respect 
to their model (involves mainly qualitative reasoning)

Analyse Students talk about/interpret modelling elements without further 
elaboration. Or identify factors that may be relevant/included in 
their model without further elaboration (i.e. factors are uttered by 
the students without further discussion)

Read & paraphrase Students read or paraphrase model elements
Off task (no further coding) Students talk about subjects unrelated to the assignment at 

hand
Other (no further coding) Other categories that are not included in the ‘type of process’ 

analysis scheme (only use this code when no other process-code 
can be applied!). Also inedible murmur is coded as other.

Focus (i.e. what are they talking about?):
Quantity Quantity (i.e. constant or stock). In case students are specifying 

an auxiliary without talking about the relationship that is 
implied.

Relation (Not yet implemented) relation/interaction between quantities. 
In case students are specifying an auxiliary and talk about the 
relationship that is implied.

Model fit/model output Fit between the model output and experimental data. Students 
have to explicitly mention (the extent of) model fit or output 
the model generates (i.e. the model graphs or table).

Data points Data points/data graph. Students have to explicitly talk about 
the data points

Model structure Structure of the model at hand, how the quantities are (visually) 
linked (i.e. visual structure). How the quantities in the 
constructed model are causally linked to each other (i.e. causal 
structure). Or how their constructed model works over time 
(i.e. dynamics). Students have to explicitly talk about their model at 
hand: When students talk about more than one relation in their 
model
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Modelling actions/the tool Talk about/mentioning modelling actions: what the students are 
doing. Or the students are trying to find out how Powersim (i.e. 
tools, buttons, formalism etc.) works

The assignment Students talk about the assignment (i.e. the ice-skater problem)

Argumentation (what type of knowledge/modelling element do they allocate in revising 
their model?)
None No notice of modelling element or knowledge type
Physics knowledge Use of terminology, concepts (i.e. units, quantities), formula’s 

common in physics
Mathematics knowledge Use of terminology, concepts, formula’s common in mathematics
Experiential knowledge Knowledge from everyday experience is used
Correspondence model 
graph and data

Students refer to (the extent of) correspondence between model 
output and experimental data.

Experimental data Experimental data (i.e. data points/graph)


