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Abstract

It is well known now that most real-world complex networks have some properties which
make them very different from random networks. In the case of interactions between authors
of messages in a mailing-list, however, a multi-level structure may be responsible for some of
these properties. We propose here a rigorous but simple formalism to investigate this ques-
tion, and we apply it to an archive of the Debian user mailing-list. This leads to the identifi-
cation of some properties which may indeed be explained this way, and of some properties
which need deeper analysis.
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I. INTRODUCTION

It makes no doubt that understanding how individuals interact in a social framework is a
key issue for sociology and in many other contexts like economy, management, anthropo-
logy, etc. Collecting large-scale data on such interactions was however a challenging, almost
impossible, task until recently. The birth and development of computation and communica-
tion capabilities (in particular the internet) opened unleashing opportunities for the study of
interactions between individuals. Indeed, it is easy in a digital framework (as opposed to real
world) to collect large amounts of traces of such interactions. This can be done for instance
on instant messaging applications [37], at e-mail level [20], at web or blog levels [13, 1], in
peer-to-peer systems [25, 33, 28, 27], and many others. The references cited here are only a
few examples of the huge amount of studies conducted recently in this area, and made pos-
sible by this new situation. See [3, 46, 51, 19] for surveys of the field.

It must however be clear that the data collected this way are incomplete and often impre-
cise. It may be significantly biased by the measurement process, see for instance [31, 32].
Even more importantly, the behaviors of individuals themselves may be influenced by the
communication medium, see for instance [7, 54]. These aspects must be taken into account in
any rigorous study of individual interactions in a numerical framework.

Our contribution lies in this context. It focuses on the interaction network induced by
exchanges between authors in a mailing-list. This network may be viewed as the fusion of
several pieces of interactions centered on a given topic, captured by the notion of thread in the
mailing-list context. One may then wonder if, and how, properties of the interaction network
may be induced by this underlying structure. The aim of this paper is to answer this question.

Before entering in the core of the paper, we need some preliminaries (on the notions
under study, the context and methodology, Section I). We will then present results on the
analysis of the network we consider (Section II), and the multi-level formalism we propose
for it (Section III). We then present results on the two indermediate levels (Sections IV and
V), and we finally present and discuss our results in Section VI.

II. PRELIMINARIES

It appeared recently (at the end of the 90’s, [56]) that most large real-world complex net-
works have several properties in common. They also have specific properties which make
them different from each other. These properties are useful to describe a given network (or a
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set of networks) and to obtain relevant information from it (them). Since a few years, many
such properties have been defined and many special cases have been studied, see the surveys
[3, 46, 51, 19].

Here we will observe some of these properties, starting from the most basic ones and
going to more subtle ones, on an interaction network between authors in a mailing-list. We
introduce these properties below. Then we describe the context in which our work lies, and
the methodology we will use. Finally, we will describe precisely the raw data on which our
work relies.

II.1. The observed properties

A network is modeled by a graph G = (V, E) where V is the set of nodes and E ⊆ V�V is
the set of links. We will consider only undirected networks here4, which means that we make
no distinction between (u, v) ∈ E and (v, u) ∈ E. We will denote by N (v) = {(u, v) ∈ E} the
neighborhood of a node v, the elements of N(v) being the neighbors of v. The number of
nodes in N(v) is the degree of v: do (v) = ⏐ (v)⏐.

The basic properties describing such a graph are its size, i.e. its number of nodes n =⏐V⏐

and its number of links m = ⏐E⏐, its average degree k = , and its density δ(G) = ,

i.e. the number of existing links divided by the number of possible links. In other words,
δ(G) is the probability that two (distinct) randomly chosen nodes are linked together.

Going further, one may define the distance d(u, y) between two nodes u and y in the
graph as the length of a shortest path between u and v, i.e. the minimal number of links one
has to use to go from one node to the other. The average distance of the graph, d(G), is

nothing but the average of the distances for all pairs of nodes: d(G) = �u, v∈V d(u, v).

The diameter D of the the graph is the largest distance between any two pairs: D = maxu, v ∈ V

(d(u, v)).
Notice that it is possible (and in general it is true) that there are some nodes between

which no path exists in the graph. To capture this, one may define the connected compo-
nents of the graph as the largest sets of nodes such that there exists a path between any two
elements of a same set. If there is only one such set, then the graph is said to be connected. If
there are several ones, then one of them is generally much larger than the others; in such
cases it is called the giant component and its size is denoted by n⎯.

If the graph is not connected, then there exists pairs of nodes for which the notion of dis-
tance is undefined; one then usually only considers the giant component, if it exists. We will
follow this convention in this paper. Therefore, we consider that the notions of distance defi-
ned above only concern the giant component (we will see that the networks we will encoun-
ter all have a giant component).

The next property is not this classical. It is the degree distribution, i.e. for all integer i
the number of nodes of degree i. One may also observe the correlations between degrees,

1
�
n2

2m
�
n(n–1)

2m
�
n
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defined as the average degree of the neighbors of nodes of degree i, for each integer i. Other
notions concerning degrees have been studied, like assortativity, but we do not use them here.

Another important kind of statistics aims at capturing a notion of local density: it mea-
sures the probability that two nodes are linked together, provided they have a neighbor in
common. In other words, it is the probability that any two neighbors of any node are linked
together. This is measured using the clustering coefficient of a node v:

cc (v) =
⏐EN(v)⏐ =

where EN(v) = E ∩ (N(v)�N(v)) is the set of links between neighbors of v. In other words,
cc(v) is the probability that any two neighbors of v are linked together. Notice that it is
nothing but the density of the neighborhood of v, and in this sense it captures the local den-
sity. It is undefined for nodes of degree lower than 2.

The clustering coefficient of the graph itself then is the average of this value for all the

nodes on which it makes sense: cc(G) = �v ∈ V , d°(v)>1 cc(v). Other notions of

clustering coefficients have been defined to capture local ‘density but this one is sufficient for
our purpose.

The distance may also be used to define a notion of centrality of nodes [55]. Let us

denote by d(v) the average distance of v to any node in the graph: d(v) = �
1
n

� �u ∈ Vd(v, u).

Then one may consider that v is more central than u when d(v) is smaller than d(u). Other
notions of centrality (like the degree itself or the betweenness centrally [55]) are often used,
but they are out of the scope of this paper.

All these notions naturally lead to the observation of their distributions and of their pos-
sible correlations, which we detail now.

The distribution of an integer valued property is, for all integer i the number of instances
(nodes or pairs of nodes in our context) for which this property has value i. For instance, the
degree distribution is the number of nodes having degree i, for all i. If the property is
real-valued (like the clustering for instance), we take for all integer i the number of instances

for which the property has a value between and and we plot it as a function

of . Distributions make it possible to observe the representativity of the average value,

and to identify non-typical cases.
Correlations between a property P and another property P′ are usually captured by plot-

ting the average value of property P′ for nodes for which property P has value i, for all i. For
instance, the degree-degree correlations are studied by plotting, for each i, the average degree
of neighbors of nodes of degree i. The degree-clustering (resp. degree-centrality) correlations
are studied by plotting the average clustering coefficient (resp. centrality) of nodes of degree
i as a function of i. The clustering-centrality correlations are studied by plotting the average

centrality of nodes of clustering between and as a function of . These
i
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plots make it easy to observe how a property tends to be related to another one, for instance if
highest degree nodes tend to be linked to highest degree nodes or not, if they tend to have a
high clustering or not, and/or if they tend to have a high centrality or not.

One may of course consider many other statistics to describe complex networks. We will
focus here on the statistics described above, which play a central role in complex network
studies and already provide a powerful toolkit for their analysis.

II.2. Typical complex networks

It appeared recently [56] that most large real-worlαd complex networks have several
non-trivial properties in common. First notice that, since we are concerned here with large
networks, n must be large. In most real-world cases, is appeared that ni is of the same order
of magnitude as n, i.e. the average degree is small compared to n. Therefore, the density

generally is very small: δ(G)∼ ∼ �
1
n

�, which is close to 0 since n is large.

It is now a well known fact that the average distance and the diameter in real-world com-
plex networks are in general very small (small-world effect), even in very large ones, see for
instance [39, 56]. This is actually true in most graphs, since a small amount of randomness is
sufficient to ensure this, see for instance [56, 35, 21, 10, 45]. This property, despite it may
have important consequences and should be taken into account, therefore should not be
considered as a significant property of a given network. We will discuss this in the methodo-
logy part below.

Another point which recieved recently much attention, see for instance [23, 5, 4], is the
fact that the degree distribution of most real-world complex networks is highly heteroge-
neous, often well fitted by a power law: Pk ∼k–α for an exponent ci generally between 1 and
3.5. This means that, despite most nodes have a (very) low degree, there exists nodes with a
very high degree. This implies in general that the average degree is not a significant property,
bringing much less information than the exponent o which is a measurement of the heteroge-
neity of degrees.

If one samples a random graph with the same size (i.e. same number of nodes n and links
m) as a given real-world one’, thus with the same density, then the obtained degree distribu-
tion is qualitatively different: it follows a Poisson law (in which all the values are close to the
average). This means that the heterogeneous degree distribution is not a trivial property, in
the sense that it makes real-world complex networks very different from most graphs (of
which random graphs are representative). The degree correlations and other properties on
degrees, on the countrary, behave differently depending on the complex network under
concern.

Going further, the clustering coefficient is quite large in most real-world complex net-
works: despite most pairs of nodes are not linked together (the density is very low), if two
nodes have a neighbor in common then they are linked together with probability significantly
higher than 0 (the local density if high). However, the clustering coefficient distributions,
their correlation with degrees, and other properties related to clustering, behave differently
depending on the complex network under concern.

2kn
�
n(n–1)
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If, like above, one samples a random graph with the same size as a real-world complex
network then it clustering coefficient is equal to the density. It is therefore very low. If one
samples a random graph with the same number of nodes and the very same degree distribu-
tion5 then the clustering coefficient still is significantly smaller [46] than in real-world cases.
The clustering coefficient therefore captures a property of networks which is not a trivial
consequence of the degree distribution.

Finally, the vast majority of large real-world complex networks have a very low density,
small average distance and diameter, a highly heterogeneous degree distribution and a high
clustering coefficient. These two last properties make them different from random graphs of
the same size (both purely random and random with prescribed degree distributions). As we
will see in Section II, this is also true for the network we consider here. More subtle proper-
ties may be studied, but until now no other one appeared to be a general feature of most
real-world complex networks. The properties described here therefore serve as a basis for
the analysis of real-world complex networks, with additional properties used to describe spe-
cial cases of interest.

II.3. Context

Many real-world complex networks have been studied using the properties described
above. Let us cite for instance file sharing [34, 25, 33, 53, 28, 27], company boards [49, 16,
6, 45], sport teams [11, 47], movie actors [56, 45], human sexual relations [22, 36], atten-
dance to political events [24], financial networks [14, 17, 26, 58], recommandation networks
[48], theatre performances [2, 52], politic ativism [12], and scientific authoring [50, 42, 44].

Since, as explained above, some of their properties appear to be very general, much effort
has been done in searching for underlying principles to explain them. The most famous one
probably is the preferential attachement principle [5]. Nodes arrive one by one and are linked
with pre-existing nodes with a probability proportional to their degree. The idea is that indi-
viduals tend to link themselves to popular persons, thus increasing their popularity. This
induces power law degree distribution, and this principle is nowadays the most widely accep-
ted explanation for this property. Other attempts have been done for various properties, see
for instance [43, 19, 29].

When one turns to more precise properties, like the exact degree distribution, the cluste-
ring coefficient, or more subtle properties, it is however difficult to explain them as conse-
quences of simple principles. One then often refers to complex notions related to the
semantics of the links and nodes, to possible behaviors of individuals (like the fact that they
tend to introduce each other to their friends or more complex principles), etc. These assump-
tions are difficult to validate (measuring them is a challenge in itself), which makes it hard to
evaluate these efforts and their results.

We use here quite a different approach. We try to explain the observed properties of the
network we consider (both simple and more subtle ones) as consequences of its multi-level
nature: it is constructed by merging many small networks derived from the threads. These
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small networks, and the merging process itself, have their own properties, which may be res-
ponsible for many properties of the global network. In other words, we seek structural, as
opposed to semantic, explanations of these properties.

Note that the idea of multi-level structure and micro/macro transition was already dis-
cussed in social sciences; in [15] for instance, the author states that the problem of highest
interest in social sciences is to understand how we transit from micro level to macro level.
This view is getting more precise with social exchange theorists [8] that emphasize the role
of elementary processes, or particles of social life. The author states as a crucial aspect the
fact to derive complex from simpler processes, structures from sub-structures, avoiding
reductionism by focussing on emergent properties. One way to construct the derivation and
tracing the global has been in social networks theory to characterize types of ties [38, 57].
This approach however only is at its very begining, and our aim here is to make one more
step in this direction.

Interestingly, one may have a different view regarding our contribution. One may notice
that semantic features actually are encoded in the multi-layer construction of the network.
For instance, one may imagine that the topic of the exchanges in the mailing lists and the
author behaviors are somewhat encoded in the thread structure and in the construction pro-
cess. This is certainly true, and our contribution may therefore also be viewed as a way to
investigate how much of these semantic aspects is encoded in the thread structure and their
combination.

II.4. Methodology

As sketched above, the main methodology developped in recent years for the analysis of
real-world complex networks relies on the definition of properties describing these networks
and on comparison of real-world networks with random graphs. The underlying idea is that a
property makes sense if it is not typical of all networks having the other properties, i.e. net-
works choosen uniformly at random among these networks.

According to this approach, for instance, the low average distance met in practice is not a
significant property, as it also is a property of any network with a reasonable amount of ran-
domness, including random networks and random networks with prescribed degree distribu-
tion. Instead, the heterogeneous degree distribution is significant since it is in sharp contrast
with what is met in random networks. If one takes a random network among the ones having
this degree distribution, then the clustering coefficient remains low, which leads to the
conclusion that this property also is significant: it is not present in most networks, and is not
a trivial consequence of the degree distribution. One can push further this approach with any
property of a network, and with any model aimed at capturing some of these properties. The
properties met in practice which are not fitted by models reveal a real-world feature which is
not captured by the model, and so it is significant.

We will use this methodology in this paper. We will compare the objects under study to
comparable random structures, and we will propose simple models to capture the observed
properties. We will focus on the way the network we consider is constructed, and we will
mimic this construction process from random structures in order to see if the properties of the
obtained network are comparable to the ones of the original network. If this is the case, we
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will conclude that these properties may be seen as consequences of properties of the
construction process. We will seek both properties which fit in this framework and properties
which do not, in order to make the difference between somewhat trivial properties and pro-
perties which need more investigation.

Notice finally that the random structures may be formally studied. This however often is
very hard and leads to approximate results which may not fit the reality very well. Instead,
one may generate many random objects in the considered class and then take the average
behavior. This is what we will do here.

II.5. The data

Our contribution, despite it can be seen as very general, relies on the use of a real-world
usage trace. It is a set of messages posted on the Debian mailing-list, the archives of which
being available online [18]. The selected data corresponds to exchanges processed during
one year, from august 2003 to august 2004, on the French mailing-list.

The data contains 25 941 messages posted from 2 287 different e-mail addresses, corres-
ponding to 6 731 threads. We will consider that each e-mail address corresponds exactly to
one individual, which is not true in practice (both indviduals may have several addresses,
and an address may be used by several individuals). This however has little influence, if any,
on the results we derive here.

Let us insist on the fact that this dataset is considered here as an example of the kind of
data to which our approach may be applied. In particular, we consider it as representative of
exchanges in a mailing-list, despite its particular nature (the fact that it is a newgroup, its
technical content, etc) may have an impact on its properties. Indeed, we will focus on very
general properties of exchanges in mailing-lists, and we will not derive results on particular
aspects of this data. We will discuss this further in Section VI.

III. THE INTERACTION NETWORK

The central object in this paper is the interaction network between authors of the e-mails
in the database described above. Some of these e-mail are answers to others, and this induces
a relation between them, which can be transposed to authors: if there is in the data an e-mail
authored by u which is an answer to an e-mail authored by v, then we say that u answered 
to v.

We then model the interaction network as the graph G = (V, E) where V is the set of all the
authors (identified by an e-mail address as explained above) and where (u, v) ∈ E means that
u answered to v, or v answered to u.

In this paper, we consider G as undirected: no distinction will be made between (u, v) and
(v, u). In other words, (u, v) ∈ E implies that u answered to v, or v answered to u, or both. We
also remove loops, i.e. links of the form (v, v). These simplifications induce some loss of
information but it is not crucial in our context where we want to study global statistics on the
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network. Instead, it helps much in simplifying the involved notions since most studies until
now considered undirected loop-free networks (and so the properties are defined on such
graphs).

Likewise, one may consider a weighted graph by adding on each (directed or not) link 
(u, v) the number of times u answered to v in the dataset. Again, this would encode much
more information than the unweighted graph we consider, but it would make its analysis
much more intricate. Moreover, there in no need of this additional information for our pur-
pose. We will discuss this further in Section VI.

We can now observe the various properties of this network. The most basic ones are
shown in Table I. The degree distribution and degree correlations are given in Figure 1. The
clustering coefficient distribution and its correlations with degrees are given in Figure 2. The
distribution of connected component sizes and the distribution of distances between pairs of
nodes are given in Figure 3. The distribution of centrality is very similar to the one of dis-
tances between pairs therefore we do not present it here. Instead, we display in Figure 4 the
correlations of both degree and clustering with the centrality. In all the relevant cases, we
also give the values and display the plots obtained for random graphs with the same size and
for random graphs with the same size and the same degree distribution.

TABLE I. – Basic statistics for the interaction network.

The first point here is to observe that our network has all the properties typical of
real-world complex networks. Its average degree is low compared to its number of nodes,
thus its density is very small. Its degree distribution is very heterogeneous, with more than
50% of nodes having less than 5 links (536 have no link at all), but some nodes with degree
around 400. This means that some authors received no answer (the ones with degree 0) while
others interacted with a significant portion of all the authors. The clustering coefficient itself
is large compared to the density: two nodes are linked together with a probability approxi-
mately 100 times higher if they have a neighbor in common than if they are chosen at ran-
dom. The network has a giant connected component and both its average distance and its
diameter are quite small, as expected.

Going further, we may observe that the average degree of the neighbors of a node is
significantly related to its own degree. Small degree nodes tend to be connected to high
degree ones, and conversely. Likewise, small degree nodes tend to have a high clustering
while high degree ones have a smaller clustering. The network has many nodes of degree 0,
which induces the same number of connected components of size 1. It also has 8 components
reduced to only one link, and all the other nodes are in the giant component. It may therefore
be viewed as connected, once the nodes of degree 0 have been removed. In the giant compo-
nent, the distances are well centered on an average value: only a few pairs of nodes are at a
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nb nodes nb links avg degree density component avg distance diameter clustering
n m k δ n⎯ d D cc

original 2287 9592 8.39 0.0037 1743 2.97 8 0.33
purely random – – – – 2285 3.87 7 0.0042
random with – – – – 1751 2.90 7 0.29
degrees
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distance which varies significantly from the average, and even in these cases the difference
remains small. Finally, it appears clearly in Figure 4 that nodes with high degree are more
central in terms of distance than nodes with low degree. On the countrary, there is no obvious
relation between clustering and centrality.

R. DORAT – MULTI-LEVEL ANALYSIS OF AN INTERACTION NETWORK 329

10/25 ANN. TÉLÉCOMMUN., 62, n° 3-4, 2007

FIG 1. – Left: the degree distribution of the original interaction network, fitted by a power law 
of exponent α = 1.3, and the one of a typical random graph of same size. Right: the degree correlations,

i.e. the average degree of neighbors of nodes of degree i as a function of i, for both the original interaction
network, for a typical random graph of same size, and for a typical random graph with the same size 

and degree distribution.

Légende française

FIG 2. – Left: the clustering coefficient distribution. Right: the correlations between clustering coefficient
and degree, i.e. the average clustering coefficient of nodes of degree k as a function of k. Each plot is given
for both the original interaction network, for a typical random graph of same size, and for a typical random

graph with the same size and degree distribution.

Légende française
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Let us insist on the fact that our purpose here is not to interpret these results: our aim in
this section was to identify some non-trivial properties of the network under concern, in order
to explore in the next sections how the way it is constructed may be seen as responsible for
these properties.

It appears clearly that the interaction network is very different from a random graph
with the same size: the degree distribution is heterogeneous, the clustering coefficient is
several orders of magnitude larger than in a random graph, and actually all the other pro-
perties are poorly fitted by random graphs, see the figures. Notice that the fact that there
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FIG 3. – Left: the connected component size distribution. Right: the distribution of distances between pairs
of nodes. Each plot is given for both the original interaction network, for a typical random graph of same

size, and for a typical random graph with the same size and degree distribution.

Légende française

FIG 4. – Left: the correlations between centrality and degree, i.e. for all i the average distance of nodes of
degree i to all others. Right: the correlations between centrality and clustering, i.e. for all �

10
i
0

� the average

distance of nodes of clustering between and to all others. Each plot is given for both the

original interaction network, for a typical random graph of same size, and for a typical random graph with
the same size and degree distribution.

Légende française
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are very few nodes of very low degree in purely random graphs implies that it is almost
connected (the giant component is almost the whole graph). If we first remove all the
nodes of degree 0 or if we restrict ourselves to the giant component of the original net-
work, however, the results are similar: the original interaction network is far from a ran-
dom graph of the same size.

If we compare it to a random network with the same size and degree distribution, the dif-
ference is not so huge. First, of course, the degree distribution is the same, which implies
that there is the same amount of nodes of degree O, almost all the others being in the giant
component. Therefore the size of the giant component and the distribution of the connected
component sizes are well fitted. Likewise, the degree correlations and the distance distribu-
tion are very well fitted, which means that they may be seen as consequences of the size and
the degree distribution. The fit for correlations between degree and centrality is also quite
good.

Though the difference is not huge, the fit is not as good if we observe properties related to
clustering. First, the average clustering is significantly lower in random graphs with the same
size and degree distribution than in the original network. As can be observed in Figure 2, the
clustering distributions have the same shape but the original one is shifted towards the largest
values. The correlations with degree show that this is due to the fact that nodes of low degree
(in particular the ones with very low degree) tend to have a very high clustering in the origi-
nal network: almost 50% of nodes of degree 2 actually form a triangle with their two neigh-
bors (while only one third do in the corresponding random graph).

Finally, we obtain quite a precise description of the interaction network we consider
(though many other properties may be observed), and we give evidence of the fact that is is
very different from a typical random graph with the same size. The fit with a random graph
with the same size and degree distribution is much better, but not perfect. Moreover, obtai-
ning properties as a consequence of global statistics like the degree distribution is not satis-
factory since it brings unsufficient explaination of the causes of these properties. Moreover,
as we will discuss in Section VI, this approach can hardly be extended to more subtle pro-
perties. This is why we propose another approach aimed at capturing the original properties
more precisely, at giving some explainations for these properties, and which may be extended
to more complex properties.

IV. THE MULTI-LEVEL FORMALISM 

The raw data is nothing but a set of messages, which we will denote by M. Each message
m is labelled with an author a(m). Moreover, m may be an answer to another message m′. We
then call m′ the father of m and we denote it by m′ = f (m). If m has no father defined this way
(it is not an answer to any other message) then we put as a convention that f (m) = m.

This leads to the following set of definitions. The root r(m) of a message m is either m
itself if f (m) = m, or else it is the root of f (m). Notice that not all message is the root of any
message, but only the ones which are not answers to any other message. Given the nature of
our data, we call these messages the roots, or queries (they generally correspond to queries
posted by users on the mailing-list) and denote their set by Q ⊆ M.
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We may now define the thread to which a message n belongs as

t(m) = {m′ such that r (m′) = r (m)}

A thread t then is a set of messages such that all messages in the set have the same root
and no other does. We will denote the set of threads by T. Notice that a thread t always
contains exactly one root, which we denote by r(t), and each root r defines exactly one
thread, t(r). Therefore there is a trivial bijection between the set of threads, the set of roots
and the set of queries. We will use these terms equivalently, depending on the context.

A thread has a tree structure with respect to f, which leads to the following definitions.
First notice that the root of a thread t is nothing but the root of the corresponding tree. Then
we define the depth of a message as its distance to its root: depth(m) is 0 if ni is a root, and 
1 + depth( f(m)) else. The height of a thread t is the maximal depth over all its messages:
height(t) = max{depth(m), m ∈ t}. The degree d°(m) of a message m is the number of mes-
sages m′ ≠ m such that f (m′) = m.

Considering now the author point of view, we define the contribution of an author x as the
number of messages he authored: c(x) = ⏐{m ∈ M, a(m) = x}⏐. Likewise, the dispersion of
an author x is the number of threads to which he/she contributed: d(x) = ⏐{t ∈ T, ∃m ∈ t,
a(m) = x}⏐. Conversely, the number a(t) of authors in a thread t is a(t) = ⏐{a(n), m ∈ t}⏐.

The first level at which we will consider the data is this one: we see the data as a set of
threads, themselves viewed as trees.

The second level at which we will consider the data is obtained from the first one by
adding the authoring information: each thread is a labelled tree.

Finally, the third level is the one of the interaction network, already defined and studied in
Section II. It can be defined using the formalism above as follows: G = (V, E) where 
V = {a(m), m ∈ M} is the set of authors, and E = {(u,v), u = a (m) ∈ V, u = a(m′) ∈ V, m≠m′
= f (m′) or m′ = f (m)} is the set of links such that two authors are linked if one of them ans-
wered to a message posted by the other. Notice that this graph may be obtained from the
thread tree structures by merging all the nodes having the same author.
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FIG 5. – The three levels at which we will consider our data. From left to right: the threads (trees),
the labelled threads, and the interaction network. Notice that we removed the loops (here, ( f, f)) 

and that we do not consider multiple links (for instance here (a, b)).
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The three levels are illustrated in Figure 5. It must be clear that the data may be conside-
red at several other levels, and could be observed using a variety of models. For instance, one
may consider the threads as graphs among authors. One may also include the directed nature
of links, or time information (the date at which each message appeared), which is available.
All these formalisms may be relevant depending on the aim of each study. We focus here on
the three levels defined above, which are sufficient for our purpose.

V. THE THREADS 

In this section we present basic statistics and models for the data at thread level. We will
therefore consider sets of trees which we describe using statistical tools, and we compare the
values obtained for the original data to the ones obtained for the models.

The first model is the purely random one: we consider the same number of messages as in
the original data, we choose randomly as many roots as in the original data, and each mes-
sage is linked to a randomly chosen father. We repeat this until there is no cycle, and there-
fore we obtain a set of trees chosen at random among the ones having the same number of
messages and roots. We will call this the random model for threads.

The other model we will consider only adds the degree constraint: we draw the degree of
each message according to the original degree distribution and then we choose for each mes-
sage a father which still has not as many sons as its degree. Again, we repeat this until there
is no cycle, and therefore we obtain a set of trees chosen at random among the ones having
the same number of messages and roots, and the same degree distribution as the original one.
We call this model the degree model.

As we will see, this model is sufficient to capture the basic properties we will consider
here. Moreover, it is important for us to consider only very simple models, in order to focus
on the multi-level nature of the data. We will therefore not consider more subtle models.
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FIG 6. – From left to right: the degree distribution of messages in threads; their depth distribution; 
the conelations between their depth and degree. Each plot is given for the original data and both random

and degree models.
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We can now observe the statistics obtained for real-world data, together with the statistics
obtained for the two models. Let us begin with some properties of the messages, namely their
degree distribution, their depth distribution, and the correlations between these two proper-
ties, see Figure 6. One can observe on these plots that the properties are quite heterogeneous
and that there is no clear correlations between them. For instance, almost 10 000 messages
recieved only one answer, while some recieved more than 10. There is however no message
with a huge number of answers, which is not surprising. Similar remarks hold for depths.

If we turn to properties of threads themselves, the heterogeneity is more pronounced, see
Figure 7: most threads contain only a few messages, but one of them contains more than
200 messages. It is however a very special case, and here again the heterogeneity is not huge.
As one may expect, there is a correlation between thread height and size.

We observed various other statistics (including the correlations between the ones plotted
here) and all the results are similar. We finally conclude that the degree model preforms bet-
ter than the random one but the difference is not huge (which is due to a quite low heteroge-
neity), and the fit is good but not perfect.

It must however be clear that these models miss important properties of the threads, like
for instance the presence of large filiform structures, i.e. series of messages m0, m1, …, ml
such that ml = f (mi – 1) and d°(mi) = 1 for all 0 < i≤ l. Capturing such properties can be done
quite easily, but it is out of the scope of this paper, see Section VI.

VI. AUTHORS IN THREADS 

The thread models proposed in the previous section are not sufficient for our purpose.
Indeed, in order to be able to construct an artificial interaction network between authors from
a set of artificial threads, we need to associate an author to each message. This is the aim of
this section.
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FIG 7. – From left to right: the distribution of thread sizes (number of messages); the distribution of their
heights; and the correlations between both (i.e. the average size of threads of height i, for all i). Each plot is

given for the original data and both random and degree models.
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Again, we will observe basic properties of this association in our real-world data, and try
to capture them in very simple models. Let us suppose that a set of messages M is given and
that there is a thread structure on this set defined by the function f(m) which, for each m ∈ M
gives its father. We also suppose that a set A of authors is given. We want to define models
which produce functions from M to A giving an author a(m) to each message m.

Again, the first model we will consider is purely random: the author of each message in
M is chosen uniformly at random in A. We will call this the random model for authors.

The other model we will consider relies on the distribution of author contributions. We
suppose that this distribution is given, then we sample the contribution c(a) of each author a
according to this distribution, and we choose at random c(a) messages m ∈ M for which we
put a(m) – a. We will call this the contribution model.

Let us notice that we may use artificial threads obtained in previous section to evaluate our
models of author labelling. However, this would imply that the performances we observe in
this section could be biased by the models in the previous section. We will therefore use here
the original threads, and simply replace the original authors with authors chosen with the
models. This makes it possible to evaluate the properties of the two kinds of models separately.
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FIG 8. – From left to right: the contribution distribution; the dispersion distribution; the distribution of the
number of roots labelled by the same author. Each plot is given for the original data and both random and

contribution labelling models, on the original threads.
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FIG 9. – From left to right: the size (in terms of authors) distribution of threads; correlations between thread
sizes in terms of messages and in terms of authors; the number of roots of threads authored by each author,

as a function of the total number of threads he/she authored (for each author we draw a point with
coordinates given by these two properties). Each plot is given for the original data and both random 

and contribution labelling models, on the original threads.
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Let us first observe in Figure the contribution and the dispersion distributions. The shapes
of the plots for the original data are unusual: they begin with a polynomial decay but the tail
of the distribution in unstructured. This means that authors may be separated into two sets:
the ones which have a quite low contribution, the number of which decays polynomially with
the contribution, and the ones with high contribution, between which there is no difference.
In other words, the number of authors having a given contribution is independent of this
contribution when it is large enough. The same observations hold for dispersion. Notice that
the polynomial decay is not captured by the random model, but that the tail is well fitted
which indicates that it is due to the structure of threads rather than the labelling model. The
contribution model takes the contribution distribution as a parameter, but it also fits the dis-
persion distribution very well. This is also true for the number of roots labelled by each
author. We do not enter in more details here since our aim is not to give interpretations of the
observed properties.

If we turn to more complex properties, like the ones in Figure 9, the fit is not so good but
it remains reasonable. This shows that, as long as we are concerned with basic properties of
authors in threads, the contribution model is sufficient. It must be clear however that it
misses some important features of the original data. For instance, in the original data, if a
message is authored by a then many other messages in the thread t(a) containing a will also
be authored by a with high probability. These properties may be included in author models,
but this is out of the scope of this paper. Our purpose here is not to model the original data
as precisely as possible, but to capture some nontrivial properties which may play a role in
the properties of the interaction network. We will therefore not deepen more the modeling
of message labels.

VII. RESULTS AND DISCUSSION 

In Section II, we described the main properties of the interaction network, up to a quite
high level of detail. In Section III, we proposed a formalism which makes it natural to
observe the object under concern at three different levels: the thread level, the labelled thread
level, and the interaction network itself. We studied basic properties of the two first levels in
Sections IV and V, and we proposed simple models to capture them.

We can now address the central question of this paper: can the properties of the interac-
tion network be seen as consequences of properties at the two other levels? In order to ans-
wer this question, we will generate articifial networks using the models proposed for the first
levels and compare them with the original network. We obtain seven artificial networks, plus
the classical comparison with purely random graphs and with random graphs with the same
degree distribution already considered in Section II.
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TABLE II. – Properties of the artificial interaction networks. From top to bottom: the basic statistics; the
average distance and the diameter; the size of the giant component and the clustering coefficient.

We therefore produce here the same statistics as in Section II for the seven new relevant
cases. See Table II and Figures 10 to 17.
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THREADS
random degree original

m k δ m k δ m k δ
random 19111 16.71 0.0073 19129 16.73 0.0073 19119 16.72 0.0073
contribution 14415 12.61 0.0055 14450 12.64 0.0055 14420 12.61 0.0055
original – – 9592 8.39 0.0037L

A
B

E
L

S

THREADS
random degree original

d D d D d D
random 3.01 5 3.01 5 3.01 5
contribution 2.89 7 2.88 7 2.87 6
original – – 2.97 8L

A
B

E
L

S

THREADS
random degree original

n⎯ cc n⎯ cc n⎯ cc
random 2287 0.0082 2286 0.0082 2287 0.0086
contribution 2149 0.32 2178 0.33 2192 0.33
original – – 1743 0.33L

A
B

E
L

S

FIG 10. – Degree distributions in the artificial interaction networks. See Figure 1 and its caption.
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There are several important points to notice. First, it appears clearly that the model used
for the threads has little influence on these results. This is a consequence of the fact that, at
least concerning the properties under concern, the properties of threads are quite close from
random as seen in Section IV. On the countrary, the model used for author labellings has a
strong influence, and the contribution model gives very good results. The artificial interaction
networks obtained with the contribution model for authors and the degree one for threads
gives better performance than the ones obtained in Section II. The only properties on which
they perform poorly is the size of the giant component and the degree correlations; this is due
to the fact that the artificial networks are almost connected, which is in turn due to the fact
that they do not capture the presence of threads of size 1. This can be easily added in the
models, or one may study these special threads separately.
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FIG 11. – Degree correlations in the artificial interaction networks. See Figure 1 and its caption.
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FIG 12. – Clustering distributions in the artificial interaction networks. See Figure 2 and its caption.
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Finally, it appears from these statistics that, despite our models are very basic (and, as we
have seen, they miss important properties of the original data), they are sufficient to capture
most simple properties of the original interaction network. In particular, they do significantly
better than random graphs with the same size, and random graphs with the same size and
degree distribution.

We will not go further in the analysis of the results since this is sufficient for our purpose.
But we want to insist on one point which seems particularily important to us. It must be clear
that the fact that the properties of our artificial networks are similar to the ones of the original
network is a non-trivial result: these properties were not encoded explicitely in the models,
which rely only on very basic properties of threads and authors. Showing that the properties
of threads have little influence while the frequency of occurences of authors are central also
is a non-trivial result. The multi-level formalism makes it possible to derive such results,
which improve significantly our understanding of the underlying object, whereas random
graph models can only be used to mimic the properties of the object.
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FIG 13. – Correlations between degree and clustering in the artificial interaction networks. 
See Figure 2 and its caption.
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FIG 14. – Distribution of connected component size in the artificial interaction networks. 
See Figure 3 and its caption.
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Going further, we beleive that a multi-level approach would make it possible to capture
much more subtle properties than the ones discussed here. For instance, the redundancy of
authors inside each thread may induce clusters in the interaction network; the presence of fili-
form structures may induce large cycles; etc. More importantly, if one wants to capture the
directed and/or weighted nature of the data, then the multi-level approach seems very well
suited whereas random graph approaches are of limited help.
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FIG 15. – Distribution of distances in the artificial interaction networks. See Figure 3 and its caption.
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FIG 16. – Correlations between degrees and centrality in the artificial interaction networks. 
See Figure 4 and its caption.
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CONCLUSION AND PERSPECTIVES 

In this contribution we studied an interaction network between authors induced by
exchanges in a mailing-list. We proposed a three-level formalism to describe and study this
data. This formalism emphasizes the fact that the final network is constructed from smaller,
simplier substructures (the threads and the labelled threads). It makes it possible to investi-
gate the influence of the properties of these small structures, and of this construction pro-
cess, on the properties of the overall network.

We observed simple properties of the threads and of their labellings. We captured them in
some basic models, either totally random or focusing one particular property. We then com-
pared the artificial interaction networks obtained by combining these models to the original
ones, and to random ones. It appears clearly that some non-trivial properties of the original
network, missed by the usual random models, are captured by the multi-level approach.

Our aim here is not to say that the models we propose are relevant and capture some
real-world feature. But we give evidence of the relevance of such an approach to capture,
explain and model subtle properties of complex networks, which would be very hard with the
classical approach.

We are convinced that this result is very general. Many networks are actually induced by
a construction process which can be simply described (and which often relies on the merging
of small substructures). Let us cite for instance co-authoring networks, in which authors are
linked together if they signed a paper together: each paper induces a clique, which may be
seen as responsible for the high clustering [30], [45], and the overall structure of the network
is induced by the way these cliques overlap. Modeling such networks by first capturing the
redundency between co-authoring relations would certainly make sense. The actor network
and co-occurrence networks are also in this case. Going further, many social networks may
be seen as the union of ego-centered networks; modeling these small networks and the way
they are combined to form the global network is a natural perspective of our work.
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FIG 17. – Correlations between clustering and centrality in the artificial interaction networks. 
See Figure 4 and its caption.
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Following these remarks, there are at least two clear direction in which our work should
be continued.

One the one hand, one could certainly use this approach and the models we proposed (or
similar ones) to give social interpretations of the observed properties. This could be done for
instance in terms of the ways dynamics of control and cognitive ressources are distributed
among peripheral authors and active (heavy) authors. The interpretation could be more
cognitive or socio-cognitive oriented if we relate certain properties of the threads with certain
tie types in order to detect epistemic networks. One may for instance define the discussion
rate of a thread as the number of distinct authors that contributed to it divided by the number
of messages it contains. If each message is signed by a different author then the discussion
rate is 1; instead, if very few authors contributed to many messages, it will be close to O, and
thus it indicates up to what point the authors are redundent in the thread. If they are very
redundent, then certainly an active discussion started in it. Else, people only posted messages
and no real interactions started between them.

Such statistics, and more subtle ones, would make it possible to distinguish between
various kinds of threads/ties/sub-structures. This would open the way to more epistemic and
social insight on the objects under concern, and we consider it as a very promising direction
for future work, in which most remains to be done.

On the other hand, this approach has the important advantage of relying on very simple
models, which makes it possible to study their properties formally, as well as their influence
on the whole. An analytic study is then possible and would lead to a tightening of theoretical
and practical questions.

Of course, one may also improve this work by proposing better models for the different
levels, or even another multi-level modeling. As already noticed, it is indeed possible to see
the data at a wide variety of levels. Some may be relevant depending on the objectives. Like-
wise, many other statistics could be considered and lead to new insight. As already discussed
in Section III, one could also view the network as directed, weighted, and also as evolving
during time. There is currently an important lack of methods and tools to tackle the com-
plexity induced by this richer information, but it makes no doubt that it would improve signi-
ficantly our understanding of the underlying objects and phenomena. As already pointed out,
the multi-level formalism has important advantages to tackle this.
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